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Abstract

This thesis consists of four empirical essays on historical volatility models, implied 

volatility and the efficiency of options markets. The first essay examines the ‘asymmetric 

volatility’ phenomenon in index returns from the perspective of the ‘diversification 

effect’. Changes in the average realized correlation among the Dow Jones’s constituents 

are found to drive changes in the index’s realized volatility and to be negatively and 

asymmetrically correlated with index returns. In line with the ‘diversification hypothesis’, 

it is shown that accounting for correlation dynamics in a GARCH specification reduces 

the level of asymmetry in index returns, with conditional correlation changes absorbing 

part of the past returns’ explanatory power over changes in the conditional variance, 

while the returns’ sign remains highly significant. The second essay examines volatility 

asymmetry from the perspective of the ‘down-market effect’, and reports that individual 

stocks’ volatilities respond asymmetrically to lagged market returns and that the 

respective degree of asymmetry is comparable to the one exhibited by the index. The 

third essay explores the possibility of an option-implied measure of the exchange rate’s 

future variance having an impact on the validity of the Uncovered Interest Parity 

condition. The results suggest that accounting for the above Jensen’s Inequality Term 

significantly increases the proportion of forward unbiasedness regressions that are in line 

with theoretical parity predictions. Finally, the fourth essay focuses on the efficiency of 

the emerging Greek options market in terms of options’ returns that are commensurate 

with the underlying risk. Based on a set of commonly used market efficiency measures, 

the hypothesis that the developing Greek options market exhibits a degree of efficiency 

that is comparable to those of the developed US and UK markets cannot be rejected.
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Chapter 1 

Introduction

The accurate measurement and forecasting of volatility have long been of great interest to 

academic researchers as well as to finance practitioners. The importance of volatility in 

finance stems mainly from the traditional principle of agents allocating resources into 

alternative investments based on the risk-retum relationship. A rational investor 

combines securities into a portfolio under the dual criterion of maximizing the expected 

return and of minimizing the risk of the position. Although the rationality assumption has 

been questioned by a relatively recent field in the finance literature, usually referred to as 

‘behavioural finance’, the proposition that investors are risk-averse and, as such, 

interested in the risk of an investment has rarely been challenged.

Given the central role that risk plays in the financial decision making process, it is 

hardly surprising that a wide body of theoretical and empirical studies have focused on 

volatility measurement and prediction. The concept of risk is directly linked to volatility 

since the most common way of establishing an investment’s risk is by estimating the 

volatility of the investment’s returns. High volatility is, then, associated with a high level 

of risk in the sense that the probability of large profits or losses by a specific security is 

more pronounced compared to low volatility, where the security’s return is likely to 

deviate only moderately from its expected value.

With few exceptions, empirical studies until the 1990s used to proxy volatility as 

the standard deviation (or variance) of daily returns. Sampling asset returns at a daily 

basis, although a straightforward task with reasonable at the time data requirements, 

suffered from certain limitations. For instance, the variance of daily asset returns is 

considered to provide rather noisy estimates of return volatility and, more importantly, it 

ignores important information in the intraday path of stock prices. The possibility to 

address the above concerns arose when high-frequency stock data became more widely 

available and affordable. Since this development, a significant amount of research has 

been conducted on high-frequency estimates of volatility, proxied by the sum of intraday

1
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squared returns, with ample evidence of high-frequency estimates being superior to low- 

frequency ones in measuring and forecasting volatility. In addition to complications 

arising from the size of the high-frequency datasets, though, such as an increased demand 

for computing power and more elaborate programming, the qualitative characteristics of 

this data posed new challenges to researchers. More specifically, the bid-ask bounce and 

other microstructure effects as well as intraday patterns have to be examined and 

accounted for in order to extract an unbiased proxy of volatility. Despite these 

complications, the use of high-frequency data in volatility analysis has become a widely 

adopted technique, with direct implications for risk management, portfolio selection and 

derivatives trading.

In terms of volatility forecasting, two distinct frameworks have been developed in 

the literature, which express significantly different lines of thought. The first framework 

describes the volatility process of a security by fitting an historical model to the security’s 

past returns. This class of historical models are generally termed Autoregressive 

Conditional Heteroscedasticity (ARCH) models, although a variety of specifications has 

been proposed based on different assumptions about the returns generating process and, 

thus, with different acronyms.

In contrast, the second framework uses forward-looking information embedded in 

option prices to extract an estimate of the market’s expectation of future volatility. This 

alternative method of predicting the volatility of asset returns usually relies on the 

assumptions of a specific option pricing model and, given that implied estimates capture 

the aggregate investors’ expectation of the underlying’s future distribution, it 

theoretically incorporates all relevant information including that contained in historical 

returns. However, the literature has yet to reach a consensus as to which framework is 

superior in forecasting volatility, as demonstrated by the subsequent significant interest 

and the body of research in both fields.

The emergence of ARCH models attempted to accommodate the widespread 

empirical findings of volatility being serially correlated and moving through time. This 

directly challenged the validity of the ‘constant volatility’ assumption, suggesting that 

changes in volatility might be predictable due to a nonlinear dependence and not 

necessarily affected by changes in exogenous variables. ARCH specifications model the

2
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conditional variance of returns, as opposed to the unconditional variance, as being 

dependant on past errors, i.e. past returns, and characterized by clusters of high and low 

observations. In other words, volatility within the ARCH framework responds to 

innovations in the asset’s returns process while periods of high (low) volatility are more 

likely to be followed by high (low) volatilities.

The simplest specification from the universe of ARCH models is the A RCH (l) 

which was presented in Engle (1982). The return distribution at time t in Engle’s model is 

conditional on all previous returns and normal with a constant mean /u, while the time- 

varying conditional variance ht at time t depends only on the previous return R,.j. 

Arguably the best known model is the Generalized ARCH (GARCH) which was 

independently developed by Bollerslev (1986) and Taylor (1986), and in which the 

conditional variance at t is also dependant on its lagged values in addition to past returns. 

Although in its simplest and most commonly used form the GARCH(1,1) specification 

describes volatility as a function of past returns and of the past value of the 

conditional variance ht.j at the first lag, the number of lags included for these variables 

has varied across different studies and ultimately depends on the time-series under 

examination. The popularity of the simple GARCH(1,1) specification in empirical 

research is attributed to the fact that, although it only has four parameters and is, 

therefore, easily estimated, it has been generally found to have comparable accuracy to 

that of more complex models. Moreover, its results are typically consistent with most 

stylized facts, particularly with respect to daily returns.

A potential limitation of the GARCH(1,1) model, however, stems from its 

inability to accommodate the widely observed asymmetric response of volatility to past 

returns of opposite signs. This conditional correlation of volatility changes to price 

changes has been termed the ‘volatility asymmetry’ phenomenon and it describes the 

empirical finding of volatility increases following negative returns being higher on 

average than volatility decreases after positive returns of similar magnitude. Volatility 

asymmetry, which is particularly pronounced in equity markets, was incorporated into a 

specification presented in Glosten, Jagannathan and Runkle (1993) by placing different 

weights in positive and in negative residuals. This modified GARCH, referred to as the 

GJR model, separates the effects of past returns of opposite signs through the use of a

3
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dummy variable for lagged negative returns, and subsequent empirical research has 

shown the GJR to provide a good fit to daily equity returns and to capture the asymmetric 

impact of signed price changes on the volatility process.

An alternative and equally popular asymmetric GARCH specification is the 

Exponential GARCH (EG ARCH) by Nelson (1991). Similarly to the GJR, the EG ARCH 

model is asymmetric since it contains two parameters for lagged innovations to measure 

the ‘size effect’ and the ‘sign effect’. However, contrary to the GJR as well as to other 

GARCH models, the EGARCH relaxes the non-negativity restrictions on the coefficients 

and the conditional variance is expressed as a multiplicative function of lagged returns 

rather than as an additive function. Finally, the significant interest that historical volatility 

models have attracted in the literature has led to the development of a wide class of more 

complicated and specialized GARCH models that are based on particular properties of 

the returns generating process. Some of the most commonly used specifications include 

the Integrated GARCH (IGARCH) where the persistent parameters sum up to unity, the 

GARCH-in-mean (GARCH-M) where heteroscedasticity is introduced into the mean 

equation as well, and the Fractionally Integrated GARCH (FIGARCH) which implies 

long memory for volatility shocks.

The second line of research, as was previously mentioned, examines contingent 

claims in order to extract information about the future distribution of the underlying 

assets. Option prices, in particular, are considered to directly reflect the market’s 

expectation of the underlying’s distribution for different time horizons and are, thus, a 

forward-looking measure of investors’ beliefs about the future realization of asset prices. 

Furthermore, the fact that historical prices are readily observable and available to market 

participants when options are quoted suggests that option prices incorporate all relevant 

information, including that of historical volatility models. Consequently, option prices 

should, in principle, contain incremental information about the underlying, in addition to 

that embedded in historical models, and option-implied estimates should reasonably be 

expected to provide more accurate forecasts of future volatility compared to those 

obtained by historical models.

The informational content of option prices has been heavily researched with 

respect to extracting implied volatility estimates of the underlying upon the options’

4
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expiration. One of the earliest and most common methodologies for inferring the 

market’s expectation of future volatility from options is based on the Black and Scholes 

(1973) volatility of an at-the-money (ATM) option. Although the use of this single option 

is partly justified by the fact that trading volume is usually the highest for ATM contracts, 

the analysis has also been extended to applying the Black and Scholes methodology on 

the entire set of options available, documenting the commonly observed volatility ‘smile’ 

and ‘smirk’, in currency and in equity index options, respectively (see for instance 

Rubinstein (1985), Taylor and Xu (1994) and Dumas, Fleming and Whaley (1998)).

The above implied volatility measures are subject to the assumptions of the Black 

and Scholes option pricing formula, the most restrictive of which is arguably that of 

lognormality in the underlying’s return distribution. Given that equity returns are 

typically found to deviate from lognormality, subsequent research has attempted to create 

a more flexible framework of extracting option implied information. The Corrado and Su 

(1996) option pricing formula constitutes such an example, where the normality 

assumption is relaxed to allow for non-normal third and fourth moments in the 

underlying’s returns. The Corrado and Su framework is practically a modification of the 

standard Black and Scholes formula that accounts for non-zero skewness and excess 

kurtosis and, in addition to being more consistent with the stylized facts on equity returns, 

it also has the advantage of simultaneously estimating the next two implied moments of 

the returns’ distribution as opposed to inferring only implied volatility.

Although empirical studies until the late 1990s were based on specific option 

pricing models to extract implied volatilities from the prices of options, the related 

literature has recently moved towards model-free estimates. When a specific model, such 

as the Black and Scholes or the Corrado and Su model, is used to infer the second 

moment of the returns’ distribution, one jointly assumes the validity of the model as well 

as the efficiency of the options market. This limitation was addressed in Britten-Jones 

and Neuberger (2000) where it was shown that the future volatility of asset returns can be 

estimated from option prices without relying on a pricing model. More specifically, 

Britten-Jones and Neuberger (2000) demonstrated that implied volatility is linked to the 

expected sum of squared returns under the risk-neutral measure and that it is completely 

specified by a set of out-of-the-money (OTM) options. This methodology provides a

5
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‘model-free’ estimate of the underlying’s future volatility without making any 

assumptions about the underlying’s returns distribution, and it has become increasingly 

popular in subsequent empirical papers.

Other studies have expanded the literature by focusing on the entire Risk Neutral 

Density (RND) of the underlying that is specified by a set of option prices, instead of 

extracting only the second moment of the distribution. Similarly to the implied volatility 

estimation techniques, certain assumptions about the underlying need to be made in order 

to infer the RND from option prices. A relatively common way of modelling the returns’ 

generating process is as a mixture of two lognormal distributions, as opposed to the 

single lognormal of the Black and Scholes formula. The double lognormal has been 

found to provide a close fit to market prices for a variety of indices and stocks, although 

alternative smoothing methodologies, such as cubic splines and implied binomial trees, 

have also been shown to provide similarly close fits to market data.

Finally, admittedly the vast majority of papers on option-implied information 

have focused on extracting the first moments or the entire RND of a univariate 

distribution. However, the 2000s have experienced an increased interest in the 

informational content of ‘implied association’. The concept of implied association refers 

to the dependence pattern that ensures the price consistency between multivariate and 

univariate options, and most of the related studies examine it from the perspective of 

‘implied correlation’, i.e. a single unconditional estimate of implied dependence per time- 

period. Although option-implied correlation had been incorporated in empirical papers 

during the early 2000’s, a significant contribution was made by a recent paper by 

Driessen, Maenhout and Vilkov (2008) that presented a straightforward framework for 

inferring an estimate of the average implied correlation among an index’s components 

using the prices of options written on the index and on the constituent stocks.

This thesis consists of four empirical studies that are related to the previously 

mentioned frameworks of modelling and forecasting volatility, i.e. historical GARCH 

specifications and option-implied estimates. Although these studies fall under the above 

general line of thought, the thesis was elaborated in a way that each study can be read 

independently. In this sense, Chapters 2 to 5 constitute discrete exercises that examine 

different research questions and lead to independent conclusions.

6
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The second Chapter presents and tests an alternative hypothesis for the 

‘asymmetric volatility’ phenomenon in index returns. The two most common 

explanations of volatility asymmetry, namely the ‘leverage effect’ and ‘volatility 

feedback’, fail to accommodate the widely reported finding of index volatility being 

significantly more asymmetric than the volatilities of individual stocks. Motivated by this 

discrepancy, the second Chapter explores the possibility of changes in the average 

realized correlation among the index’s constituents driving the asymmetric response of 

the parent index’s volatility to past returns of opposite signs. This alternative explanation 

is directly linked to Rubinstein’s (2000) ‘diversification effect’ which states that an 

increase (decrease) in the index’s average correlation reduces (increases) the benefits of 

diversification and, therefore, increases (decreases) the index’s risk as reflected by a 

higher (lower) volatility of returns. Given that the index’s variance is essentially the 

weighted sum of individual stock variances plus the cross-correlation terms and that 

index volatility asymmetry does not appear to stem from asymmetric individual stock 

volatilities, the dynamics of the average index correlation could potentially reconcile the 

difference between the volatility processes of these two asset classes. Focusing on the 

Dow Jones Industrial Average across a ten-year sample period, the second Chapter tests 

the ‘diversification effect’ hypothesis by examining the co-movement of the index’s 

average realized correlation with index returns and with index volatility, as well as by 

estimating an extended GJR specification that includes conditional changes in correlation 

as an exogenous regressor in the index’s conditional variance equation.

The third Chapter shifts the focus from the index’s volatility to that of individual 

stocks, with the emphasis remaining on the ‘volatility asymmetry’ phenomenon. More 

specifically, the common empirical finding of individual stock volatilities being less 

asymmetric than those of indices is analyzed from the perspective of the ‘down-market 

effect’ which treats volatility asymmetry as a result of market-level influences rather than 

of asset-specific innovations. Within this context, the hypothesis is tested that the 

conditional variances of equities (including equity indices) respond asymmetrically to 

market ‘news’ rather than to idiosyncratic ‘news’, a hypothesis which is consistent with 

the stylized fact of volatility asymmetry being more pronounced in the case of market 

indices compared to individual stocks. In order to examine the effect of systematic ‘news’

7
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on the volatility processes of individual stocks, a modification of the GJR model is 

estimated across the thirty components of the Dow Jones where lagged signed market 

returns have replaced firm-specific returns, as well as an extension where the conditional 

variance responds both to idiosyncratic and to systematic innovations.

The last two Chapters move from empirical applications on historical volatility 

models to the informational content of option-implied volatility and to the efficiency of 

options markets. The objective of the fourth Chapter in particular is to re-examine one of 

the most heavily cited topics in the finance literature, namely the ‘forward premium 

puzzle’, using information implied by currency options. This empirical anomaly refers to 

the widely reported finding that when currency spot returns are regressed on the forward 

premium, slope coefficients are produced that are systematically less than unity and, in 

many cases, less than zero. Negative slopes are, therefore, interpreted as evidence against 

the forward rate being a conditionally unbiased predictor of future spot rates and as a 

significant violation of Uncovered Interest Parity, making excess returns in the foreign 

exchange markets appear predictable. The fourth Chapter explores the hypothesis of 

Jensen’s Inequality being related to the magnitude of the observed difference between 

forward rates and the subsequent realizations of spot rates. In contrast to previous papers, 

though, the Jensen’s Inequality Term is proxied by the option-implied variance of the 

spot rate and the hypothesis of interest is tested by estimating an extended specification 

where the spot rate’s future variance is included as an additional regressor using the Fully 

Modified Least Absolute Deviations (FM-LAD) estimator.

The use of options to extract information about the future distribution of asset 

returns is directly linked to the informational efficiency of the options market. Inferring 

option-implied estimates of volatility, thus, assumes that options are correctly priced to 

reflect the aggregate market expectation of future volatility. Although previous studies 

have examined the efficiency of developed options markets, such as the US and the UK, 

to report that some mispricing exists that is not arbitraged away due to transaction costs, 

the issue of mispricing in emerging markets so far has been ignored. The fifth Chapter 

attempts to address this concern by focusing on the developing Greek options market of 

the Athens Derivatives Exchange (ADEX). The efficiency of the market is examined 

from the perspective of option returns that are commensurate with the underlying risks
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and consistent with theoretical pricing models, so that the market is considered to be 

efficient if options are priced to compensate investors for risk and do not offer abnormal 

returns. The hypothesis of interest is that, given the globalized marketplace and the fact 

that most of the trading volume in Greece is attributed to specialized international 

investors, the emerging market of ADEX is comparably efficient with respect to 

developed markets. The alternative hypothesis is partly motivated by the findings of 

Santa-Clara and Saretto (2009) and states that higher transaction costs combined with 

thinner trading in ADEX will widen the no-arbitrage bands and are likely to be associated 

with more pronounced mispricing. The efficiency of the Greek options market is 

examined by two commonly used measures: the significance of CAPM alphas that 

effectively measure the options’ risk-adjusted returns, and the returns of positions that are 

immune to the underlying risks (i.e. delta and delta-vega neutral straddles). The results 

are then contrasted to those typically obtained in the case of the US and the UK 

developed options markets to determine the comparative efficiency of the ADEX.

Finally, Chapter 6 provides an overview of the main findings and contributions of 

the present thesis. The results of each Chapter are summarized separately following a 

general conclusion regarding the thesis’ unifying topic.
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Chapter 2 

The Role o f  Realized Correlation Dynamics in Explaining 

Volatility Asymmetry in Dow Jones Index Returns

2.1 Introduction

2.1.1 Literature Review

It has become common practice in the finance literature to model stock return volatility as 

negatively correlated with stock returns. In addition to this negative correlation, it is 

widely accepted that, dependent on the asset of interest, the above relationship is 

asymmetric and conditional on the return’s sign. The above ‘asymmetric volatility’ 

phenomenon has been commonly referred to as the ‘leverage effect’, due to the fact that a 

large part of the early studies that examined this relationship attributed volatility changes 

to changes in a firm ’s leverage. One of the earliest papers to discuss this phenomenon is 

Black (1976) who demonstrates that volatility responses to negative shocks are 

fundamentally different than those to positive shocks. More specifically, asset volatility 

following a negative return is systematically found to be higher compared to volatility 

that follows a positive return of similar magnitude. Black suggests that this asymmetry is 

potentially attributed to the fact that negative returns reduce the value of a firm’s equity 

relative to its debt, thereby making the overall firm riskier, a fact that is reflected in 

higher levels of stock price volatility.

Black’s hypothesis of leverage increases turning into increases in asset volatility 

has been empirically tested by Christie (1982) who finds that, although changes in 

leverage are significantly related to changes in volatility, the debt-to-equity ratio fails to 

fully explain the observed effect. Similar conclusions are reached by Figlewski and Wang 

(2000) who examine a large sample of stocks included in the Standard and Poor’s 100 

Index, as well as the index itself. Using direct measures of a firm’s debt-to-equity ratio, 

Figlewski and Wang (2000) show that, in contrast to theoretical predictions, changes in 

leverage have different impacts on realized and on implied volatility changes within their
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sample. Moreover, changes in leverage alone fail to fully explain volatility changes, 

especially in the case of up markets, with the authors concluding that the ‘leverage effect’ 

is mostly not attributed to leverage but ‘...should more properly be termed as a down 

market effect’.

Campbell and Hentschel (1992) and French, Schwert and Stambaugh (1987) 

propose volatility feedback as an alternative explanation for volatility asymmetry. When 

volatility increases at time t, expected risk premia at t+1 also increase to compensate 

investors for bearing more risk. An increase in risk premia, i.e. a higher return at t+1, is 

associated with a decrease in the stock’s price at /, leading to a negative contemporaneous 

relationship between returns and unexpected changes in volatility. A recent study by 

Smith (2007) explores the effect of ‘volatility feedback’ within the context of the risk- 

retum relationship. The author examines a large sample of US stocks and indices, and 

finds that including volatility feedback in a stochastic volatility model explains a 

statistically and economically significant part of the variance of daily returns, while the 

model’s negative conditional correlation between stock returns and volatility closely 

approximates the actually observed correlation coefficient.

Bekaert and Wu (2000) compare the magnitude of the ‘leverage effect’ and of 

‘volatility feedback’ in explaining volatility asymmetry and suggest that the latter effect 

dominates the former. Moreover, Wu (2001) extends the model of Campbell and 

Hentschel (1992) to incorporate both the leverage effect and the volatility feedback effect 

as potential explanations, and finds that both effects are determinants of asymmetric 

volatility, with volatility feedback being statistically and economically significant.

Bollerslev, Litvinova and Tauchen (2006) further examine asymmetric 

conditional variance using high-frequency data, with particular focus on the causality 

relationship between volatility and returns. More specifically, the ‘leverage effect’ 

explanation suggests that stock returns cause changes in volatility through changes in the 

debt-to-equity ratio and, consequently, in the underlying risk of the asset. On the other 

hand, the ‘volatility feedback’ explanation reverses this relationship, with unanticipated 

volatility changes causing changes in the current required return of the asset to 

compensate for the new level of underlying risk. Bollerslev et al (2006) use intraday 

returns of futures written on the S&P 500 from January 1988 to March 1999, and report a
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strong negative correlation between volatility and current and lagged index returns, while 

the correlation between returns and lagged volatility is found to be very close to zero. 

Their results are interpreted as evidence of a prolonged leverage effect in intraday returns 

that lasts for several days, combined with ‘...an almost instantaneous volatility feedback 

effect’.

The GJR model, developed by Glosten, Jagannathan and Runkle (1993), is one of 

the most commonly used to account for the asymmetric volatility phenomenon. The GJR 

model specifically allows for an asymmetric response of volatility to lagged returns, with 

the conditional variance depending on the sign as well as on the magnitude of past 

returns. Another popular asymmetric model is Nelson’s (1991) Exponential GARCH 

(EGARCH), which was modified by Cheung and Ng (1992) to include a lagged price 

variable in the conditional variance. The subsequent empirical testing of these 

asymmetric models has suggested that volatility dynamics are significantly different for 

the parent index compared to its constituent stocks. For instance, Lamoureux and 

Lastrapes (1990) investigate the effect that structural changes have on the volatility 

processes of thirty randomly selected US stocks as well as on that of the CRSP value- 

weighted index, and find that the GARCH model appears to overstate the persistence in 

variance by failing to take into account structural shifts in the model. When dummy 

variables are introduced that permit a non-stationary unconditional variance, the 

persistence estimates are lower compared to those of a simple GARCH(1,1). However, 

this decline in variance persistence is relatively greater for individual stocks (average 

persistence falls from 0.97 to 0.82) than for the index (from 0.99 to 0.96), indicating that 

volatility dynamics are significantly different for these two asset categories.

Kim and Kon (1994) provide additional evidence for different asymmetric 

responses of the conditional variance to returns in the case of indices and of individual 

stocks. By examining a sample of individual stocks (the thirty constituents of the Dow 

Jones Industrial Average) and three indices (S&P 500, CRSP Equally Weighted, and 

CRSP Value Weighted) from 1962 to 1990, they find that volatility asymmetry is more 

pronounced for index returns compared to returns of individual stocks. This finding is 

also supported by Tauchen, Zhang and Liu (1996) who compare the volatility processes 

of four large-capitalization stocks to those traditionally observed for aggregate market
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indices, and conclude that the ‘leverage effect’ is present but relatively weaker in the 

conditional variance of individual stocks.

Blair, Poon and Taylor (2002) examine the volatility processes of the S&P 100 

and of its constituents from 1983 to 1992, with particular focus on the asymmetry with 

respect to past returns as well as on the effects of the October 1987 crash. Using an 

extension of the GJR model, they report that the volatility processes of the index and of 

the majority of stocks indeed support the existence of the so-called ‘leverage effect’. 

M ore importantly, though, the asymmetric response of the conditional variance to lagged 

returns appears to be significantly more pronounced for the index compared to individual 

stocks.

Stivers, Dennis and Mayhew (2006) provide further evidence on the differences 

between the volatility processes of indices and of individual stocks by separating the 

effect of changes in idiosyncratic and in systematic volatility. Their study relies on the 

key assumption that implied volatility represents an observable proxy for the expected 

return volatility and, thus, defines the ‘asymmetric volatility’ phenomenon as the 

relationship between returns and innovations in implied volatility. Examining a sample of 

daily returns for the S&P 100 index and for fifty large US firms across the period 1988 to 

1995, the authors find that the daily returns of individual stocks are weakly correlated 

with changes in idiosyncratic volatility, proxied by firm-specific implied volatility. This 

finding, combined with the fact that index returns exhibit a strong negative comovement 

with changes in systematic volatility, as measured by the index’s implied volatility, is 

interpreted as evidence of a more pronounced ‘asymmetric volatility’ effect for the index 

compared to individual stocks. Moreover, firm-specific stock returns are found to be 

significantly correlated with changes in the index’s implied volatility, i.e. with 

innovations in systematic volatility, suggesting that the ‘asymmetric volatility’ 

phenomenon describes the effect of market-level influences rather than a ‘leverage effect’ 

or ‘volatility feedback’, consistent with the results by Figlewski and Wang (2000).

Given that the index’s variance comprises of the constituents’ variances and of 

pairwise correlations among the individual stocks, and that asymmetric index volatility 

cannot be fully attributed to asymmetries in the volatility processes of the constituents, it 

has been suggested that volatility asymmetry in the index might be caused by changes in
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correlations. The above hypothesis is directly related to Rubinstein’s (2000) 

‘diversification effect’ which describes the fact that cross-correlations among individual 

securities tend to increase when the index goes down, reducing the benefits of 

diversification when it is needed the most. Within this framework, a negative index return 

is associated with an increase in the average correlation of its constituents and leads to 

higher index volatility. Therefore, Rubinstein’s ‘diversification effect’ provides a 

theoretical justification for a positive relationship between changes in average correlation 

and index volatility, which is the focus of the present study.

In fact, Cappiello, Engle and Sheppard (2006) document a similar negative 

relationship between index returns and correlations for a sample of FTSE All-World 

Indices (21 countries) and 5-year average maturity bond indices (13 countries). Cappiello 

et al find that correlations in equity and bond indices exhibit asymmetric responses to bad 

news relative to good ones, although equities appear to be more significantly affected 

than bonds. Furthermore, Kroner and Ng (1998) report an asymmetric response of 

covariance between large and small firms, with the conditional covariance tending to be 

higher following bad news about large firms compared to good news. Finally, Driessen, 

Maenhout and Vilkov (2008) use a measure of the average implied correlation among an 

index’s constituents to examine the commonly reported finding of index options bearing 

a larger (negative) risk premium compared to options written on individual stocks. Using 

options data on the S&P 100 and on its components from January 1996 to December 

2003, Driessen, Maenhout and Vilkov (2008) show that the risk stemming from changes 

in the average implied correlation of the index is priced in the US market, concluding that 

correlation risk ‘... contributes to the variance risk premium of the index, but is not 

present in the individual stock options in its orthogonal part’.

2.1.2 Scope of Study

The aim of this Chapter is to investigate whether changes in correlations among the 

constituent stocks can explain the volatility asymmetry of the parent index. Despite the 

large amount of empirical evidence documenting an asymmetric response of the 

conditional variance to lagged returns of different signs in the case of indices, and to a
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relatively smaller degree in individual stocks, the literature has still to reach a consensus 

on the source of this phenomenon. The intuition behind changes in correlations driving 

the ‘leverage effect’ stems from the fact that the index’s variance is defined as the sum of 

the variances of its components plus the correlation terms among individual stocks. Since 

volatility asymmetry is significantly more pronounced in the index compared to the 

constituent stocks, it could be the case that the asymmetric response of index volatility to 

lagged returns is driven, at least partly, by changes in correlations.

Rubinstein’s (2000) ‘diversification effect’ suggests that correlations among 

stocks increase subsequent to a negative index return, indicating a positive relationship 

between changes in correlations and index volatility. Blair, Poon and Taylor (2002) also 

highlight significant differences in the volatility processes of an index and of its 

components. However, to the best of my knowledge, the extent to which correlation 

dynamics can explain the ‘asymmetric volatility’ phenomenon has not been explicitly 

tested. The present study attempts to fill this gap by, among other empirical tests, 

estimating an extension of the GJR asymmetric model on DJLA returns that specifically 

accounts for changes in the average correlation among the index’s constituents.

Overall, a set of initial results is presented that supports the ‘diversification effect’ 

hypothesis, with changes in the average DJLA. realized correlation being negatively 

related to index returns. This relationship is found to be asymmetric, since correlation 

increases by more following a negative return compared to its decrease following a 

positive return of similar magnitude. Some additional evidence for the diversification 

hypothesis is provided by the positive relationship between the average realized 

correlation and the index’s realized intraday volatility, which suggests that increases 

(decreases) in the correlations among the index’s constituents result in increases 

(decreases) of the index’s level of riskiness. Finally, when an extension of the GJR 

specification is estimated for DJLA returns, the asymmetry in the conditional variance’s 

responses to past returns of different signs is reduced, albeit still present, and the 

coefficient for correlation changes is highly significant in ‘down’ markets while 

insignificant in ‘up’ markets. In appears that, although the negative relationship between 

volatility and the direction of market movements strongly holds, its asymmetric property 

that relates to the magnitude of index returns is weakened after accounting for the
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average correlation’s dynamics. The above results can be interpreted as initial evidence 

for conditional innovations in the average correlation among the index’s components at 

least partly driving the observed volatility asymmetry in Dow Jones index returns.

The remaining of the Chapter is organized as follows. Section 2.2 presents the 

data used in this Chapter. Section 2.3 describes the methodology for estimating the 

index’s realized volatility and the realized average correlation among the index’s 

components from high-frequency data on the individual stocks. Section 2.4 analyzes the 

asymmetric response of index volatility to lagged index returns of different signs. Section

2.5 discusses the time-series properties of the average realized correlation of the Dow 

Jones Industrial Average and the relationship between the average realized correlation 

and the index’s realized volatility. Section 2.6 examines the extent to which correlation 

dynamics can explain volatility asymmetry in DJLA returns. Finally, Section 2.7 

concludes.

2.2 Data

The high-frequency data used in this study is from the New York Stock Exchange 

(NYSE) Trade And Quotation (TAQ) database. The TAQ data files provide continuously 

recorded time-stamped prices, volumes and bid-ask quotes of particular transactions for 

stocks traded in NYSE, the American Stock Exchange (AMEX), and the National 

Association of Security Dealers Automated Quotation system (NASDAQ). The specific 

sample used in this empirical analysis focuses on the Dow Jones stocks that are traded in 

NYSE, where trading hours extend from 9:30 EST until 16:05 EST. Relevant dividend 

distributions are also included in the TAQ dataset.

The sample period starts on 30 March 1998 and ends on 30 March 2007, for a 

total of 2,265 trading days. Table 2.1 lists all 37 companies that were members of the 

DJLA index at any stage during the sample period, including company names, ticker 

symbols and, where applicable, name changes, dates of entry and dates of exit from the 

index. Between March 1998 and March 2007, the composition of DJLA changed twice, 

namely on 1 November 1999 and on 8 April 2004, with four replacements taking place 

on the first date and three on the second. In total, 23 companies remained in the DJLA
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throughout the entire sample period (Survivors), while 7 companies left (Leavers) and 7 

were introduced in the index (Entrants). Finally, one company (AT&T) exited the index, 

with its ticker re-entering after a merger with another index member (SBC).

Figure 2.1

DJIA Spot Level
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The closing spot levels of the index as well as of its constituent stocks for the 

sample period were obtained through DataStream. The above prices have been adjusted 

for dividends and for changes in capital structure, and are used to compute log-retums at 

a daily frequency.
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Table 2.1

List of DJIA Constituent Stocks

Company Name Ticker
Date of 

Entry

Date of 

Exit

AlliedSignal Incorporated (Honeywell International) ALD (HON)
Aluminum Company of America (Alcoa) AA
American Express Company AXP 08/04/2004
American International Group Incorporated AIG 08/04/2004
AT&T Corporation T
Boeing Company BA
Caterpillar Incorporated CAT
Chevron CVX 01/11/1999
Coca-Cola Company KO
DuPont DD
Eastman Kodak Company EK 08/04/2004
Exxon Corporation (Exxon Mobil) XOM
General Electric Company GE
General Motors Corporation GM
Goodyear GT 01/11/1999
Hewlett-Packard Company HPQ
Home Depot Incorporated HD 01/11/1999
Intel Corporation INTC 01/11/1999
International Business Machines IBM
International Paper Company IP 08/04/2004
Johnson & Johnson Company JNJ
J.P. Morgan & Company JPM
McDonald’s Corporation MCD
Merck & Company Inc MRK
Microsoft Corporation MSFT 01/11/1999
Minnesota Mining & Mfg (3M Company) MMM
Pfizer Incorporated PFE 08/04/2004
Philip Morris Companies Inc (Altria Group, Incorporated) MO
Procter & Gamble Company PG
SBC Communications (AT&T) SBC (T) 01/11/1999
Sears & Roebuck Company S 01/11/1999
Travelers Group (Citigroup) TRV (C)
Union Carbide UK 01/11/1999
United Technologies Corporation UTX
Verizon Communications Incorporated VZ 08/04/2004
Wal-Mart Stores Incorporated WMT
Walt Disney Company DIS
This Table provides a list o f the companies that were members o f the Dow Jones Industrial Average index (DJIA) at

any point during the sample period of March 1998 to March 2007. The parentheses in the ‘Company Name’ field refer 

to name changes within the sample period.
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2.3 Estimation of the Realized Volatility and the Average Realized 

Correlation of the DJIA

Andersen, Bollerslev, Diebold and Ebens (2001a) provide a detailed discussion on the 

theoretical justification for using the sum of intraday squared returns as a measure of 

realized stock volatility (see also Andersen, Bollerslev, Diebold and Labys (2001b)). This 

Section summarizes the above discussion and describes the methodology for estimating 

the realized index volatility and the average realized correlation among the index’s 

components using high-frequency stock data. Assume a N xl vector of the logarithmic 

price process p t that follows a multivariate continuous time stochastic volatility diffusion:

dpt =Htdt +CltdWt (2.1)

where Wt is a standard A-dimensional Brownian motion, Qt is strictly stationary, and the 

time unit h is normalized to a trading day. The period return rt+h,t is then defined as the 

logarithmic difference between the spot prices at t and at t+h:

r<+h.,=P,+h -P ,  (2.2)

Conditional on the sample path realization of p t and Qt, the distribution of the 

continuously compounded returns rt+h,t is then:

W  1 -  N ( ^ / t ,„ d T ,^ a ,„ d T )  (2.3)

where cr{//,+r,£2f+r}J=0 refers to the er-field generated by the sample paths of the drift p t+T

and the diffusion matrix Ql+r for 0< i<  h. Hence, the integrated diffusion matrix provides 

‘. . . a  natural measure of the true latent h-period volatility’. Andersen et al (2001a) then 

suggest that, under weak regularity conditions,
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Z  W .aW ,A  -  f  &,+rd * -> 0 (2.4)

as A —> 0, i.e. as the sampling frequency of the returns increases. Thus, dependent on the 

sampling interval, the sum of sufficiently finely sampled intraday returns can provide a 

direct measure of ex post realized volatility that is asymptotically free of measurement 

error.

The methodology in Andersen and Bollerslev (1997a) and in Andersen et al 

(2001a) is adopted in order to extract a measure of realized volatilities and pairwise 

correlations of the DJIA’s components using high frequency quotes. Similarly to the 

above papers, time-series of artificial intraday returns for each stock are constructed at 

five-minute intervals. The five-minute sampling frequency is typically considered to be 

short enough so that the summation in (2.4) closely approximates the integrated volatility, 

and long enough to minimize the noise stemming from market-microstructure effects.

Given that trading hours in NYSE extend from 9:30 EST until 16:05 EST, one 

trading day can be decomposed in 79 five-minute intervals, such that A is equal to 1/79, 

or roughly 0.0127. Intraday spot levels are measured as the midpoint of the best bid and 

the best ask prices recorded at or immediately before the 80 five-minute marks (note that 

best quotes are used instead of prices at which actual trades occurred). The corresponding 

79 five-minute returns in a trading day are then computed as the logarithmic differences 

between consecutive five-minute marked spot prices.

Due to the use of a discrete sampling interval to approximate the continuous 

volatility process, Andersen et al (2001a) suggest that the presence of negative serial 

correlation in the returns series as well as the inherent bid-ask spread are likely to bias the 

estimation of the above volatility measure. In order to avoid or at least minimize the 

dependence in the mean of the observed intraday log-differences, demeaned returns are 

estimated by fitting a simple MA(1) model for each of the five-minute series across the 

full ten-year sample. Also note that, similarly to previous empirical studies, high- 

frequency returns refer only to intraday log-differences in spot prices, i.e. spot changes 

within the trading day, excluding any overnight price changes. Although this approach 

admittedly results in some loss of information with respect to the underlying returns
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series, it is associated with a less noisy and well-behaved time-series. For notational 

simplicity, the resulting five-minute demeaned return for stock i that is recorded at day t 

and at the five-minute interval k is denoted by rt'+kA A. Hence, the realized daily covariance 

matrix cov, is given by:

co v ,(i,y )=  Y .  (2-5)

where the elements in the diagonal of covt(i,j) refer to the intraday realized variances 

vft = {cov,(U)} of the thirty stocks in the DJIA. Similarly, the intraday realized

covariances between stocks i and j  at time t are given by the elements of cov, outside the 

diagonal, with the intraday realized correlations denoted by corr,(i,j):

.N_  {cov,(1,7)}c orrt( i , j )  = ------ -------- (2 .6)

Finally, the weighted average index correlation p ind,t at time t refers to the average 

correlation across all possible pairs of the DJIA components, scaled by each stock’s 

weight in the composition of the index:

/, s  S  w,wjCOrrt ( i J )  (2 .7)

where N  gives the number of stocks included in the index, i.e. thirty component stocks in 

the case of the Dow Jones Industrial Average, and w, refers to the weight of stock i in the 

index’s composition. Since the DJIA is a value-weighted index, the weight w, of stock i is 

essentially the ratio of the stock’s price divided by the sum of the prices of all thirty 

components.

In addition to computing realized volatilities for the DJIA constituent stocks and 

the average realized correlation of the parent index, the above time-series of demeaned
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five-minute returns of the individual stocks also allow the estimation of the index’s 

realized intraday volatility. More specifically, the index’s intraday return at day t

and at the five-minute interval k can be easily obtained as the weighted sum of the 

constituents’ five-minute returns in (2 .8).

N

A .A (2.8)
1=1

Similarly to the methodology described above for the individual stocks, the DJIA 

realized variance v,^ , is proxied by the sum of squared intraday index returns, i.e.

vfnd,t = X  [ ( ^ a .a )2] • Finally, the DJIA’s realized volatility at time t is denoted by
<t=1..[/i/A]

RV, and is measured as the (annualized) squared root o fv ^  t .

2.4 Volatility Asymmetry in DJIA Index Returns

This Section analyzes the returns distributions of the Dow Jones Industrial Average and 

of its constituent stocks, with the main focus on determining whether volatility responds 

asymmetrically to past returns of opposite signs. First, descriptive statistics of the 

unconditional distribution for the DJIA are reported and contrasted to those for the 37 

individual stocks in the sample. Moreover, asymmetric volatility regressions and the 

standard GJR model are estimated across all assets.

2.4.1 Daily Returns of the DJIA and of its Constituents

Table 2.2 presents descriptive statistics for the log-retums of the DJIA and of its 

components during the sample period of 30 March 1998 to 30 March 2007. In addition to 

the first four moments of the distribution, the Table reports minimum and maximum 

values, the autocorrelation at the first lag and the Box-Ljung statistics for the first fifteen 

lags. With respect to individual stocks, the median, lower quartile (Lq) and upper quartile
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(Uq) of each statistic are provided, while the last column gives the number of constituents 

having a statistic greater than that of the index.

As can be seen from the Table, the DJIA mean daily return is 2.12 basis points, 

compared to 3.51 bps for the median stock. Given the benefits of diversification, it is not 

surprising that the index’s variance ( 1.22 bps) is significantly lower than that of the 

median stock (4.50 bps) or even of the first quartile stock (3.42 bps). Furthermore, the 

DJIA has lower skewness and kurtosis compared to 23 out of a total of 37 stocks, with 

the vast majority of stocks exhibiting lower minimum values and higher maximums 

compared to the index. Finally, the index has a small but insignificant negative 

autocorrelation at the first lag (autocorrelation is -0 .01) with most of the stocks also 

having insignificant first-order autocorrelations (prj  for the median stock is 0 .00 ).

Table 2.2

Summary Statistics of the Daily Returns on the DJIA and its Constituents

Summary

Statistics
Index

Stocks

Median L q U q
Greater than 

Index

Mean x 104 2.12 3.51 1.35 5.09 23
Variance x 104 1.22 4.50 3.42 5.32 36
Skewness -0.03 0.08 -0.33 0.23 23
Kurtosis 3.71 5.06 3.11 10.74 23
Max 0.06 0.11 0.10 0.14 36
Min -0.07 -0.14 -0.18 -0.10 3

Pr.l -0.01 0.00 -0.02 0.02 24

Qi 25.93* 22.86 17.68 29.93* 15
This table tabulates summary statistics o f the daily returns on the DJIA index and its constituents. The sample period is 

30 March 1998 to 30 March 2007. The index’s constituents include firms that remained in the DJIA throughout the 

entire period (Survivors), as well as Leavers and Entrants, for a total of 37 individual stocks. p r I refers to the first order 

autocorrelation in daily returns. Q, is the Box-Ljung statistic (first 15 lags) and * denotes a significant statistic at the 5% 

confidence level.

This study places particular emphasis on the asymmetric relationship between 

return volatility and past returns of opposite signs. Panel A of Table 2.3 reports the 

results of the Engle and Ng (1993) test for negative bias. Similarly to the previous Table,
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the relevant statistics for the index are reported as well as for the median, lower and 

upper quartile stocks. The Engle and Ng (1993) methodology tests whether volatility 

responds asymmetrically to past returns of different signs by regressing the following 

equation:

r ;' = a + p s, (2.9)

where Rt is the asset’s daily return at time t, and st-i is a dummy variable that takes the 

value of one if the lagged return R,.j is negative and the value of zero otherwise. 1 The 

Negative Bias statistic is then equal to the t-ratio of the slope coefficient /? in the above 

regression, with a large negative t-ratio suggesting a more pronounced asymmetry of 

volatility with respect to lagged negative and positive returns. The results presented in 

Table 2.3 indicate that the degree to which volatility is more sensitive to negative returns 

compared to positive ones, is significantly more pronounced for the index than for its 

components. More specifically, the t-ratio of the regression in (2.9) in the case of the 

DJIA is -6.69, while the median (lower quartile) stock has a slope t-ratio of -5.14 (-6.48). 

More importantly, 30 out of 37 stocks have statistics that are lower (in absolute terms) 

than the index’s, confirming previous empirical findings of volatility asymmetry being 

significantly more evident for indices compared to individual stocks.

1 The upper case variable R, refers to daily returns using closing prices as opposed to intraday returns which 
are denoted by the lower case variable rl+hJ.
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Table 2.3

Asymmetric Realized Volatility Regressions for the DJIA and its Constituents

Panel A: Negative Bias Test

R ^= a+ J3s,

Index

Stocks Median

Lq

Uq

Greater than Index

-6.69

-5.14

-6.48

-3.51

30

Panel B: ARVt
1=1

+  f s ' R , . ,  + e ,

Index
Stocks

Median uq

7 -0.868

(-6.94)

-0.2444 -0.5189 0.0152

f -0.668

(-5.44)

-0.5315 -0.7246 -0.2479

Panel C: ARVt =CC +
;=i

\ + £<

Index
Stocks

Median Uq

7o -0.7826

(-11.71)

-0.3801 -0.5403 -0.0593

7-i -0.7463

(-10.84)

-0.2358 -0.5193 -0.1486

0.6431

(6.57)

3.4092 2.3538 4.2394

0.0230

(0.23)

-0.7364 -1.2614 -0.5193

This Table tabulates the results o f regressions examining the asymmetric responses of realized volatility to past returns 

of opposite signs for the DJIA and its 37 constituent stocks. Panel A presents the results o f the Engle and Ng (1993) 

test for negative bias in the returns processes. Panel B presents the results of regressing changes in realized volatility on 

lagged signed returns. Panel C presents the results o f regressing changes in realized volatility on contemporaneous and 

lagged returns and absolute returns. The sample period is March 1998 to March 2007.
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2.4.2 Volatility Asymmetry in Index and in Individual Stocks’ Returns

Another methodology that has been frequently employed in the ‘leverage effect’ 

literature to detect asymmetries in the volatility process involves a regression of volatility 

changes on lagged returns. Equation (2.10) describes such as specification, where 

changes in realized volatility are regressed on signed past returns. RV, is the realized 

volatility at time t, ARV, refers to changes in realized volatility at t and is computed as the 

first difference (RVt -  RVt-i), s' is a dummy variable that takes the value of one if the 

lagged return Rt.j is negative and of zero otherwise, while s+ is a dummy that takes the 

value of one if Rt-i is positive and of zero otherwise.

5

ARV, = a  + ^ f i A R V ^ i  + y~s~Rt_, + y+s+Rt_, +£t (2.10)
;=]

The specification in (2.10) is examined at a daily frequency using the time-series 

of realized volatility estimated in Section 2.3 from high-frequency data. The first five 

lags of realized volatility have been included in the regression in an attempt to control for 

any autocorrelations in the time-series. Within this framework, equation (2.10) 

distinguishes between the effects of past negative and positive returns on the asset’s 

realized volatility by estimating separately y and y+. Given the widely documented 

negative relationship between changes in volatility and past returns, both coefficients are 

expected to be negative in order to reflect the well-observed volatility increases in down 

markets and volatility decreases in up markets. Moreover, an asymmetric volatility effect 

should be reflected by the coefficient y of negative returns being higher in absolute terms 

compared to the coefficient y+ of positive returns, so that volatility increases after 

depreciations outweigh on average volatility decreases that follow appreciations of the 

same magnitude. Finally, the t-statistics across all asymmetry regressions are calculated 

on the basis of Newey-West (1987) Heteroscedasticity and Autocorrelation Consistent 

(HAC) standard errors.

Panel B of Table 2.3 presents summary results of estimating equation (2.10) for 

the index and for the 37 individual stocks. The t-statistics for the index’s estimates are
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reported in parentheses and, for brevity, only the estimates of the y coefficients are 

reported. As can be seen from the Table, in the case of the DJIA both gammas are 

negative and statistically significant, with y equal to -0.868 (t-stat = -6.94) and y+ equal to 

-0.668 (t-stat = -5.44). The above negative values of the signed returns’ slopes confirm 

the predicted negative relationship between past returns and changes in volatility at the 

daily level and are in line with existing empirical findings. More importantly, though, 

past negative returns are found to have a greater impact on subsequent index volatility 

compared to past positive returns, as evidenced by y being higher (in absolute terms) 

than y+, supporting the existence of an asymmetric volatility effect in index returns.

When the regression model in (2.10) is estimated for the 37 individual stocks, the 

results differ significantly compared to those obtained for the index. On the one hand, the 

vast majority of the estimated gamma coefficients are negative, confirming the predicted 

negative relationship between changes in realized volatility and past returns (27 y and 36 

y+ out of a total of 37 are found to have a negative sign). However, a closer examination 

of the regression results for the DJIA constituents suggests that volatility asymmetry is 

far from a uniform characteristic among the sample stocks. The volatility asymmetry 

present in index returns is not observed for most of the index’s components, with only 13 

out of the 37 stocks exhibiting lower (more negative) y compared to y+. Moreover, the 

coefficients of interest for negative and for positive returns are -0.2444 (t-stat = -1.09) 

and -0.5315 (t-stat = -2.22), respectively, for the median stock, i.e. negative returns are 

found to have on average a smaller impact on subsequent volatility changes compared to 

positive returns, suggesting an opposite kind of asymmetry in the volatilities of the DJIA 

components, while similar conclusions can be reached if the coefficients of the lower (Lq) 

and upper (Uq) quartile stocks are examined. In other words, the specific characteristics 

of the index’s volatility process that refer to a negative correlation between the sum of 

intraday squared returns and lagged returns, as well as the additional response of 

volatility to past returns of negative sign, are confirmed for only one third (roughly) of 

the individual stocks that are included in the index.

Equation (2.11) represents an alternative way of testing for asymmetries in the 

volatility process of the DJIA and of its constituents. Within this framework, changes in 

realized volatility are regressed on contemporaneous and past returns, as well as absolute
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returns. The coefficients y^ and y ^  of absolute returns capture the effect of past and of

contemporaneous returns, irrespective of their sign. On the other hand, the 

coefficients y0 and y_x measure the additional impact of negative returns on changes in the 

realized volatility of the asset.

5

aRv, = a + r v m +rA + r . , +rM K I +rH K,  I+ ( 2.1 d
1=1

The results from estimating equation (2.11) are reported in Panel C of Table 2.3. 

The estimated gammas for the index are both negative, indicating a negative correlation 

between changes in volatility and past/contemporaneous returns. Moreover, the effect of 

lagged returns, as measured by y_x, is smaller in magnitude (slope is -0.7463) compared

to the effect of contemporaneous returns, measured by % (-0.7826). It appears, thus, that

price movements in the previous trading day have, on average, a lower influence on the 

magnitude of volatility changes compared to concurrent price movements. Note that both 

coefficients are statistically significant at any reasonable level, with t-statistics of -11.71 

and -10.84 for %and y_x, respectively.

The coefficient y^ of absolute contemporaneous returns for the index is positive 

(slope is 0.6431) and statistically significant (t-stat = 9.79), while the coefficient y ^  of

absolute lagged returns is positive (slope is 0.0230) but statistically indistinguishable 

from zero (t-stat = 0.23). Overall, changes in index volatility appear to be negatively 

correlated with past as well as with contemporaneous returns, with concurrent returns 

having a greater effect on volatility changes compared to lagged returns. However, given 

the statistical significance of y0 and y_x, which measure the additional response of

volatility to ‘bad news’, the above negative relationship is more pronounced for negative 

returns compared to positive ones of similar magnitude. These results provide some 

additional support for the hypothesis of asymmetric volatility in the time-series of DJIA 

returns.
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When equation (2.11) is estimated for the individual components of the DJIA, the 

results are relatively in line with those obtained for the index. With respect to absolute 

returns, y^ is significantly positive for all 37 individual stocks, although the coefficient

7j_j| of absolute lagged returns is consistently negative across all stocks. Moreover, the

additional impact of negative returns, as measured by yQ and y_x, is negative and

statistically significant for 22 and 23 stocks, respectively.

Summing up, the above results show that the return-generating processes of the 

index and of its constituents differ substantially, with arguably the most importance 

difference being the increased level of volatility asymmetry in the case of the index. 

Section 2.6 investigates whether this difference can be explained by the dynamics of the 

average realized correlation among the index’s components.

2.4.3 Asymmetric GARCH Model

In the class of GARCH models that have been developed to account for the asymmetric 

responses of volatility to past positive and negative returns, this study uses the extended 

version of the GJR(1,1) model by Glosten et al (1993). The conditional mean and 

conditional variance of the standard GJR(1,1) specification are given as follows:

where R, is the asset’s return at time t, h, is the conditional variance at t, the standardized 

residuals Zt are independent identically distributed (i.i.d.) with mean 0  and variance 1, and 

st-i is a dummy variable that takes the value of one if the lagged return Rt.j is negative and 

of zero otherwise. The leverage effect is incorporated in the above specification by the 

use of two coefficients, aj and a.2 , that separate the effects of past positive and negative 

returns. More specifically, the impact of lagged positive returns on the conditional 

variance is given by ay, while aj + a.2 provides the impact of lagged negative returns. 

Since the effect of past returns on volatility is proportional to aj and ay + a 2 for R,.i > 0

(2 . 12)
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and R,.} < 0, respectively, a significantly positive a 2 indicates the existence of a leverage 

effect, i.e. the conditional variance increases by more following a negative return 

compared to a positive one. Within this framework, a higher a 2 represents a more 

pronounced asymmetry in the asset’s volatility process.

Following Blair et a l  (2002), the degree of asymmetry in the conditional variance 

is examined using two measures. The first is termed the ‘asymmetry ratio’ and is 

calculated as the ratio of a 2 to the sum (ay + a2). The second measure is the correlation 

between the stochastic increments in the price and in the variance equation described in 

Duan (1997). Moreover, assuming symmetrically distributed returns, volatility 

persistence is estimated as ay + a2/2 + /?. Finally, the GJR specification is estimated using 

the maximum log-likelihood method (ML) with a Gaussian likelihood .2

Persistence = ax+ ^ a 2+ (2.13)

Asymmetry

Ratio
(2.14)

Correlation = r / 2 5 2mi/2 (2.15)
[7t{ax + ax a 2 + — a 2)]

The remaining of this Section discusses the results from fitting the standard 

GJR(1,1) model described in equation (2.12) for DJIA returns and for the returns of its 

constituents. Table 2.4 reports the point estimates of the GJR specification for the index, 

as well as for the median, lower quartile and upper quartile stocks. Estimates of volatility 

persistence and asymmetry are also provided in the last three rows of the Table.

2
Blair et al (2002) suggest that ‘...while it is unlikely that the returns are generated by a conditional 

Gaussian distribution, the use of the Gaussian likelihood does ensure consistent estimates of the 

parameters, which compensates for a loss of efficiency’.
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Table 2.4

Estimates of Volatility Parameters for the DJIA and its Constituents using the standard GJR model

h, ~  ao+ a\R  ̂\ + a2S<->K> +  A - i

Index
Stocks

Median Lq uq Greater than Index

<*1 -0.0026
(0.84) 0.0149 0.0097 0.0318 35

a 2 0.1181
(0.00) 0.0550 0.0339 0.0790 3

P 0.9362
(0.00) 0.9416 0.9231 0.9577 19

Persistence 0.9927 0.9976 0.9825 0.9998 25
Correlation -0.73 -0.56 -0.62 -0.41 34

Ratio -0.02 0.23 0.14 0.42 35
This Table tabulates the volatility estimates of a standard G JR (l.l) model on the DJIA and its constituent stocks. The 

sample period is 30 March 1998 to 30 March 2007. Correlation and ratio are measures o f volatility asymmetry. P- 

values for the estimates on the DJIA are in parentheses. The standard errors o f the conditional variance’s equation are 

assumed to follow a Student’s t distribution.

The ay point estimate for the index is -0.0026, compared to 0.0149 for the median 

stock. Out of the 37 individual stocks in the sample, only one (namely HD) has a ay 

coefficient equal to zero, with the point estimate for the remaining 36 stocks averaging 

0.05. With respect to a 2, the point estimate in the case of the DJIA is 0.1181, while the 

respective value for the median stock is 0.0550. Moreover, a2 for the upper quartile stock 

(Uq) is 0.08, and is higher than that of the index for only 3 out of the 37 sample firms. 

This parameter essentially captures the additional response of volatility to negative 

innovations and, as has been already discussed, is directly related to asymmetric 

volatility. Therefore, although ay and 0 2  need to be considered jointly, the above results 

seem to indicate that the asymmetric volatility in index returns is significantly more 

pronounced compared to its constituent stocks.

(X
Overall, the average sensitivity of volatility to past returns, as given by a x+-^~,

is slightly higher for the index (0.0578) than for the median stock (0.0531), a result that is 

mostly attributed to the large additional response of the index’s conditional variance to 

‘bad news’, as captured by the high value of 02. Also, given the constraints of the GJR 

optimization, it is possible for the estimate of a2 to be negative as long as the relationship
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a.] + a.2 > 0 is satisfied. Within the sample of 37 stocks, the estimated «2 was negative for 

two companies (namely EK and PFE), but statistically significant for only one of them 

(PFE).

The coefficient for the lagged variance in index returns is 0.94 and it is equal to 

the respective value for the median stock. Furthermore, since the point estimates for /? in 

the low and upper quartile stocks are 0.92 and 0.96, respectively, it can be argued that 

any differences in the volatility processes of the index and of its constituents are mainly 

attributed to responses to news, as captured by aj and a.2 . Finally, it should be noted that

the estimated GJR parameters satisfy the stationarity constraint a 0 + a x + ~ a 2 + P <  1 f° r

the index and as well as for 35 stocks.

As has been previously mentioned, the asymmetry ratio and the correlation 

between the stochastic increments in the price and the volatility processes can be used as 

measures o f asymmetric responses of the conditional variance to past returns of different 

signs. It can be seen from Table 2.4 that both these measures indicate a more pronounced 

volatility asymmetry in the case of the index compared to its constituent stocks. More

a
specifically, the asymmetry ratio for the index, defined as ------— , is equal to -0.02 due

#1 + <Z2

to the fact that the a\ estimate for the DJIA is slightly negative, while the respective value 

for the median (lower quartile) stock is 0.23 (0.14). Since the ratio includes the total 

response of volatility to ‘bad news’ in the denominator, lower values are associated with 

a more significant leverage effect. Therefore, the fact that 35 out of the 37 companies 

exhibit higher ratios than that of the index suggests that asymmetric volatility is 

significantly more pronounced for the index than for its components.

In addition, the correlation measure for the DJIA is -0.73. Given that a more 

negative correlation indicates a more asymmetric response of the conditional variance to 

past positive and negative returns, and that only three stocks exhibit higher (absolute) 

correlation, it is concluded that, within this sample, the ‘leverage effect’ is more evident 

in the index compared to individual stocks.

Persistence measures how quickly volatility returns to previous levels after a large 

positive or negative change or, in other words, how quickly volatility shocks decay away.
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Estimated as a x + ̂  a 2 + , higher levels of persistence are associated with long-memory

in the conditional variance, i.e. with periods of high (low) volatility lasting longer 

compared to lower persistence estimates. Based on estimating the GJR(1,1) specification 

for the DJIA returns, the index exhibits a very high level of volatility persistence (0.9939) 

while the majority of stocks (25) have even higher point estimates than the index. The 

median stock has an estimate of 0.9976 and the upper quartile estimate is 0.9998. Overall, 

only two stocks, namely AXP and TRV, have persistence estimates exactly equal to one 

(to the sixth decimal point).

2.5 Analysis of the DJIA Average Realized Correlation

This Section discusses the statistical properties of the average realized correlation for the 

Dow Jones Industrial Average that has been estimated using the methodology described 

in Section 2.3. Descriptive statistics for the time-series of p ind are presented and 

contrasted with the evolution of the DJLA’s realized volatility RV. In addition to the 

univariate distributions of pind and RV, the relationship between the two variables is also 

examined as a preliminary analysis of the hypothesis of correlation dynamics driving the 

‘asymmetric volatility’ phenomenon in DJIA index returns.

2.5.1 Time-Series Properties

Panel A of Table 2.5 presents descriptive statistics for the univariate distributions of p ^  

and RV, as well as for their daily changes. As can be seen from the Table, the average 

level of average realized correlation is 0.17, a value that is relatively close to the median 

level of 0.16. During the sample period / w  ranged from a minimum of 0.01 to a 

maximum of 0.53, while the standard deviation across the entire period was 0.08. In 

addition to the mean being slightly higher than the median, positive skewness (0.81) 

indicates that the distribution of p md is dominated by larger observations in the right side 

of the distribution, albeit to a relatively small degree. With respect to the fourth moment, 

the p ind distribution is found to be leptokurtic with a kurtosis estimate of 4.01. Finally, the
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Jarque-Bera test rejects the hypothesis of normality in the time-series of average realized 

correlation (t-stat = 355).

Table 2.5

Summary Statistics for the DJIA Average Realized Correlation and Realized Volatility

Panel A: Descriptive Statistics

Mean Median Min Max
Standard

Deviation
Skewness Kurtosis

JB

Statistic

Pind 0.17 0.16 0.01 0.53 0.08 0.81 4.01 355

p ind Daily Changes 0.00 0.00 -0.36 0.36 0.07 0.05 4.36 176

R V 0.13 0.12 0.03 0.50 0.06 1.89 8.21 3,906

R V  Daily Changes 0.00 0.00 -0.24 0.25 0.04 -0.04 8.37 2,724

Panel B: Autocorrelations

lag(l) lag(2) lag(3) lag(4) lag(5)

Pind 0.6106 0.5619 0.5148 0.5136 0.4918

p ind Daily Changes -0.4375 -0.0026 -0.0584 0.0259 0.0017

R V 0.7571 0.7183 0.6746 0.6708 0.6444

R V  Daily Changes -0.4200 0.0099 -0.0821 0.0466 -0.0285

Panel: Cross Correlations

-3 -2 -1 0 1 2 3

DJIA Daily Log-Retums

pind Daily Changes 0.0254 0.0457 -0.0455 -0.1580 0.0071 0.0126 0.0252

R V  Daily Changes

pind Daily Changes -0.0423 -0.0217 -0.2514 0.6086 -0.2494 0.0092 -0.0688

This table tabulates summary statistics for the time series o f DJIA average realized correlation (pind) and realized 

volatility (RV). Panel A provides descriptive statistics for p md and RV  as well as for their respective daily changes. 

Panel B presents the autocorrelations o f the series for up to 5 lags. Panel C presents the cross-correlations o f index 

daily log-retums and of daily changes in RV  with respect to daily changes in p ind, for up to 3 lags and 3 leads.

The average and median daily changes z i/w  in the index’s average realized 

correlation are both equal to zero, suggesting that there is no trend in the time-series of 

the average index correlation. The first difference A p ^  ranges between -0.36 and 0.36, 

and the standard deviation is 0.07. The distribution of daily correlation changes is almost 

zero-skewed (skewness = 0.05) but leptokurtic (kurtosis = 4.36). Similarly to the time-
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series of p m , the Jarque-Bera test rejects normality at any reasonable significance level 

(t-stat = 176).

The Dow Jones realized volatility RV  has a mean of 0.13 per annum across the 

period from March 1998 to March 2007. RV  ranges from a minimum of 0.03 to a 

maximum of 0.50, and the standard deviation is 0.06. Similarly to the index’s realized 

correlation, the distribution of realized volatility is positively skewed (skewness = 1.89) 

and highly leptokurtic (kurtosis = 8 .21), while the hypothesis of normality is rejected 

based on the Jarque-Bera t-statistic of 3,906. The first difference ARV  of realized index 

volatility has both the mean and median equal to zero, and ranges from -0.24 to 0.25. 

Contrary to Apind, ARV  exhibits negative skewness (-0.04), but is also significantly 

leptokurtic (kurtosis = 8.37).

2.5.2 Correlation Persistence

A substantial number of previous studies has found a pronounced long-run dependence in 

return volatility (see for instance Andersen and Bollerslev (1997b), French, Schwert and 

Stambaugh (1987) and Blair, Poon and Taylor (2002)), while a similar finding for return 

correlation has been documented in Andersen et al (2001a). Consistent with previous 

findings, DJIA realized volatility and average realized correlation are found to be indeed 

characterized by long memory.
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Figure 2.2

DJIA Average Realized Correlation

30 /03/1998  12/08/1999  24 / 12/2000  08 /05/2002  20 /09/2003  01 /02/2005  16/06/2006

Panel B of Table 2.5 tabulates the autocorrelation coefficients of p itld and RV, as 

well as of their daily changes, for up to five lags. It can be easily seen that 

autocorrelations in the time series of p imj and RV  are relatively high at the first five lags, 

indicating some correlation and volatility clustering. The above clustering is also 

supported by Figure 2.2 which presents the time evolution of p ind, where it can be easily 

seen that periods of high (low) correlations are more likely to be followed by periods of 

high (low) correlations. Figure 2.3 plots the time-series of RV  and, similarly, shows that 

periods of high (low) volatilities are systematically followed by periods of high (low) 

volatilities. Finally, the first differences of the above series, namely Apind and ARV, do not 

exhibit similar long-run dependence, with autocorrelations after the first lag being 

relatively low in absolute terms. However, autocorrelations at the first lag are significant 

for Apind and ARV  (-0.44 and -0.42, respectively).
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Figure 2.3

DJIA Realized Volatility
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date

Figure 2.4
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Figure 2.5

Correlogram of DJIA Realized Volatility

100 

lag (days)

2.5.3 Co-movement of Correlation and Volatility

Andersen et al (2001a) document a positive intertemporal relationship between realized 

correlation and volatility in the Dow Jones index (see also Skintzi and Refenes (2005) for 

a similar finding using option-implied estimates of DJIA volatility and correlation). This 

sub-section explores the relationship between / w  and RV  for the sample period from 

March 1998 to March 2007.

The scatterplot in Figure 2.6 plots daily changes in the DJIA average realized 

correlation on daily changes in the index’s realized volatility. A positive relationship is 

evident, indicating that correlations tend to increase (decrease) during periods when 

volatilities also increase (decrease). This positive relationship between Apind and ARV  is 

further explored by regressing daily changes in correlation on contemporaneous and past 

changes in volatility, controlling for lagged innovations in correlation. The regression 

model is described in equation (2.16) and the results are presented in Panel A of Table 

2 .6 .

5 5

= » + X / ? ^ , , w  + I>yA tfV ’,-J +£, (2.16)
1=1 y'=0
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Figure 2.6

Scatterplot of Correlation Changes on Volatility Changes
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volatility changes

The results from the above specification support the positive relationship between 

changes in correlation and contemporaneous changes in volatility. The slope coefficient 

of ARV  on contemporaneous changes in Apind is 1.1036 and highly significant (t-stat = 

49.32). Moreover, past changes in volatility also appear to have an impact on correlation 

changes, with the coefficients for the first five lags of ARV  being positive and statistically 

significant.

The relationship between Apind and ARV  is further investigated by performing a 

Granger causality test. Given that a positive relationship between changes in correlation 

and changes in volatility was documented in the previous analysis, the following test

attempts to determine which one is the driving variable behind this positive co

movement. Therefore, it is tested whether lagged changes in R V  cause changes in p ind 

and/or lagged changes in p ind cause changes in RV. The Granger causality test involves 

the estimation of the following two regressions:

n n

*PMJ = «I + E  A AW,-, + £  +e„ (2.17)
i=\ i= l

n n

A* V, = a 2 + £  P2A P m .,-i + X  h rAfiV^, + e2l (2.18)
/=! 1=1
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The first specification tests the null hypothesis H0: fin  = ... = fiin = 0 against the 

alternative that lagged ARV  Granger cause Apind. The second specification tests the null 

hypothesis H0: fi2i = ... = fi2n = 0 against the alternative that lagged Apind Granger cause 

ARV. Using the Schwarz criterion, the number of lags has been set to n = 5.

Table 2.7 reports the results of the Granger test for the above equations. The F- 

statistic is 1.42 for equation (2.17), rejecting the null hypothesis of changes in volatility 

driving changes in correlation. In addition, the F-statistic for equation (2.18) is 121.46, 

which by far exceeds the critical value (4.74) at a significance level of 5%. Overall, these 

results provide some initial support for changes in the average correlation in the index’s 

constituents Granger causing contemporaneous changes in the index’s realized volatility, 

and are in line with the ‘diversification effect’ explanation of asymmetric index volatility.

Table 2.6

In tertem poral Relationship between Apind, A R V  and D JIA  L og-R eturns

Panel A: Regression of Apind on A R V

5 5

=  « ■+ X f i A P ^ , - ,  + X +  e ,
1=1 1=0

cto Yo Yl Y2 Y3 Y4 Ys Adj.R2

0.0001
0.9299
(37.10)

0.5614 0.3040 0.1804 0.0598 
(16.24) (8.14) (4.78) (1.64)

0.1935
(6.11)

0.58

Panel B: Regression of J / w  on DJIA Log-R eturns

5 0 0

a p * . ,  = a  + X f i A P ^ , - ,  + X y s K i  + X r t j , k ,  1 +  ^
,=l  /=-2 l = -2

a 0 Yo Y-i Y-2 Yioi Yi-ii Yl-2I Adj.R2

-0.0019 -0.8681
(-8.28)

-0.8556 -0.3119 0.2464 0.1253 
(-8.01) (-2.87) (1.56) (0.81)

-0.0834
(-0.53)

0.34

Panel C: Regression of Api„d on DJIA L og-R eturns

5

= «  + X A a /U ,- , +f D! R, + f D ~ R,
i = l

ao Y+ i Adj.R2

-0.003 -0.4522
(-2.41)

-1.2523
(-6.76) 0.32

40



www.manaraa.com

Table 2.7

G ranger Causality Tests for the Daily Changes in p^  and RV

&P*., = + X  J
i=l  i=l

ARV = «, +t.r.,Mv,_, +£„
1=1 r=l

Null Hypothesis F-statistic

x o II xo II II 3 II o 1.42

oIIc
colIIliC£LIIo
X

121.46
This Table tabulates the results of the Granger causality tests on daily changes in average realized correlation (Apind) 

and daily changes in realized volatility {ARV). The first null hypothesis tests whether changes in RV  Granger cause 

changes in p md. The second hypothesis tests whether changes in p md Granger cause changes in RV. The critical value is 

4.735 (at the 5% significance level, for 10 degrees of freedom in the numerator and 5 degrees of freedom in the 

denominator).

2.5.4 Correlation Asymmetry

Skintzi and Refenes (2005) find that DJIA implied correlation responds asymmetrically 

to past positive and negative index returns, while Andresen et al (2001a) reach the same 

conclusion using measures of realized correlation. Following this line of thought, the 

regression model in equation (2.19) is estimated, in an attempt to examine the effect of 

past index returns on the index’s average realized correlation in the full sample:

= a + Z A M ^ , . i + X r A ;  + E ^ | « ^ |  + R, (2.19)
«=1 j=-2 j=-2

where R, is the daily log-retum of the DJIA at time t. The first five lags of the Ap in(j series 

have been included in order to account for the autocorrelation structure of p ind described 

in 2.5.2. The main variables of interest are the contemporaneous and lagged index 

returns, as well as their absolute values. Since previous empirical findings suggest that 

correlations between securities increase during and after down markets and decrease 

when the market rises, one would expect the coefficients y0, y.i and y.2  of lagged index 

returns to be negative and statistically significant. Furthermore, significantly positive
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coefficients of absolute index returns (y^, for j  = [0 , - 1, -2]) would indicate that the above 

negative relationship is also dependent on the magnitude of past index returns.

Panel B of Table 2.6 reports the regression results for equation (2.19). The 

coefficient of Rt is negative (yo = -0.8681) and statistically significant (t-stat = -8.28), 

confirming the predicted negative relationship between changes in correlation and 

contemporaneous changes in the index level. The fact that coefficients of index returns at 

the first two lags are also negative (y.j = -0.8556 and y_2 = -0.3119) and statistically 

significant (the t-stats are -8.01 and -2.87, respectively) provides further evidence for the 

hypothesis that correlations among an index’s constituents tend to increase when the 

index drops and to decrease when the index rises. This finding is related to Rubinstein’s 

‘diversification effect’ which states that at periods of declining markets, securities tend to 

move more closely together, thereby reducing the opportunities for diversification and 

increasing the risk of investing in the index. Moreover, the absolute magnitude of index 

returns appears to have a small impact on contemporaneous changes in correlation since 

the yioi coefficient of \R,\ is found to be positive (y\o\ = 0.2464) albeit marginally 

insignificant (t-stat = 1.56). In other words, Apind is not only affected by the sign of 

contemporaneous index returns, but it might also be dependent on the return’s magnitude, 

with a larger fall (rise) in the index being associated with a higher increase (decrease) in 

the correlations among constituent stocks.

After establishing that movements in the DJIA negatively affect changes in 

contemporaneous and in future correlations, the extent to which correlation responds 

symmetrically to index returns of different signs is examined. In order to distinguish 

between changes in correlation following positive and negative returns, the following 

regression is estimated (see also Skintzi and Refenes (2005)):

APMJ =  a  + X  PAPi*u-i + / d ; r , + y ~d ; r , + e, (2 .20)
1= 1

where D(+ is a dummy variable that is equal to one if the contemporaneous index return is 

positive, and equal to zero otherwise. Accordingly, the dummy variable D~ takes the 

value of one if R, is negative, and of zero otherwise. Within this framework, the
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coefficient y+ refers to the impact of positive index returns on contemporaneous changes 

in correlation, while y refers to the impact of negative index returns on z l /w

As can be seen from Panel C of Table 2.6, similarly to the previous findings in 

(2.19), the y+ and /  coefficients in equation (2.20) are both negative and statistically 

significant (t-stats are -2.41 and -6.76, respectively), supporting the existence of a 

negative relationship between Apind,t and Rt. However, the coefficient y for negative 

index returns is significantly larger (in absolute magnitude) compared to y+ for positive 

returns, indicating a pronounced asymmetry in the response of correlation to market 

movements of different signs. More specifically, given that the coefficient y for negative 

Rt is almost three times the magnitude of y+ for positive index returns (the coefficients are 

-0.4522 and -1.2523, respectively), it appears that correlation increases during negative 

market movements are on average higher than correlation decreases during positive 

market movements by a factor of three. This asymmetric relationship is consistent with 

findings by Andersen et al (2001a) and by Skintzi and Refenes (2005).

2.6 The Impact of Correlation Dynamics on DJIA Volatility Asymmetry

2.6.1 Extended Asymmetric Regressions

The ‘diversification effect’ suggests that changes in the average index correlation are the 

main source of asymmetry in the index’s volatility. Within this framework, volatility 

increases (decreases) are caused by past increases (decreases) in the correlations among 

the index’s constituents which, on average, tend to coincide with negative (positive) 

index returns. The above hypothesis is examined by estimating an extended version of 

equation (2 .10), where lagged changes in the average realized index correlation Ap ind ,_x

are introduced as an additional explanatory variable for changes in the index’s 

volatility ARV, . According to the ‘diversification effect’ hypothesis, lagged correlation 

changes are expected to be significantly correlated with volatility changes, thereby 

decreasing the explanatory power of lagged returns. In addition, given that correlation 

increases in down markets on average outweigh correlation decreases in up markets (see 

Section 2.5.4), the effect of past index returns is expected to be similar irrespective of the
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returns’ signs, i.e. y = y+. The extended model is given in equation (2.21) and the results 

are presented in Panel A of Table 2.8.

ARV, = a  + Y JP M V ,- i + 7  s-R,_x + f s +R,_x+SApind,_x+£, (2.21)
;=i

The estimated coefficients of (2.21) do not seem to support the ‘diversification’ 

explanation of asymmetric index volatility. More specifically, the coefficients of lagged 

returns remain relatively unchanged compared to those of the standard model in (2 .10), 

with /  = -0.8683 and y+ = -0.6762. However, their statistical significance after 

controlling for correlation dynamics is reduced, as evidenced by t-statistics of -4.29 and 

of -4.54 for y and y+, respectively (compared to t-statistics of -6.94 and -5.44 in equation 

(2.10)). Furthermore, the difference in the coefficients’ magnitudes indicates that the 

asymmetry in index volatility is as pronounced as in the standard specification, with 

volatility increases after negative returns being on average higher than volatility 

decreases after positive returns of similar absolute levels. The failure of Apind,_x to

explain volatility changes is further demonstrated by its coefficient 8 being statistically 

insignificant (t-stat = -0.83). Finally, somewhat surprisingly, the estimated coefficient 8 

of lagged correlation changes is found to be negative and, thus, in contrast with the 

theoretical prediction, as well as with previous empirical findings in Section 2.5.3, of a 

positive co-movement of correlation changes with volatility changes.

An extended version of the asymmetric equation (2.11) is also tested, where 

correlation changes have been added as an additional independent variable. The new 

specification is given in (2.22) and the results are tabulated in Panel B of Table 2.8. 

Similarly to the extended specification in (2.21), the introduction of Ap ind,_x is expected

to reduce the impact of lagged returns on volatility changes, reflected by less significant 

returns’ coefficients. Moreover, the additional impact of past negative returns, as 

captured by y.j, is expected to decrease, or even become insignificant after controlling for 

correlation dynamics.
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ARV, = a + '£ d fiARV,_, + y0R, +  y_,RM + yw \R,\ + yH  |* M |+ +  £, (2.22)
1 =1

Similarly to the extended specification in (2.21), the results from estimating (2.22) 

indicate that correlation dynamics fail to account for the asymmetric volatility of the 

DJIA. Although the statistical significance of the returns’ gammas reduces, their 

magnitude remains relatively unchanged after including &pindt_x in the specification.

Furthermore, negative index returns still have an additional impact on volatility changes 

compared to positive ones, while the coefficient of lagged correlation changes is 

statistically indistinguishable from zero (t-stat = -0.73).

Table 2.8

Asymmetric Volatility Regressions Controlling for Correlation Dynamics

Panel A: ARV, = a  + £  £ARV_,. + f  s'R,_, + + SApM j. x + £,
1=1

y f S Adj.R2

-0.8683
(-4.29)

-0.6762
(-4.54)

-0.0145
0.30

(-0.83)

Panel B: ARVt = a + X  P M v ,- ,  + + r - A
/=i

+ Jfo lR. 1+ zm I*m 1+< * v w i + £,

To r-x 6 Adj.R2

-0.7809
(-7.33)

-0.7498 0.6452 
(-7.61) (3.89)

0.0193 -0.0123
0.35

(0.13) (-0.73)
This Table tabulates the results of regressions examining the asymmetric responses of realized volatility to past returns 

of opposite signs controlling for the dynamics of the index’s average realized correlation. The regressions are estimated 

on the returns of the DJIA for the period 30 March 1998 to 30 March 2007

2.6.2 Extended GJR-C Model

In order to directly examine whether correlation dynamics have an impact on the 

evolution of ht, an additional term A p ^ t- i  is introduced into the equation for the 

conditional variance of the GJR specification in (2.12). The variable Apind,t.i is a measure 

of lagged changes in the average correlation among the index’s constituents using high- 

frequency data on the index and on its constituents, estimated using the Andersen et al
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(2001b) methodology described in the previous subsections. The extended specification 

is termed GJR(1,1)-C and is given as follows:

Rt =ju + y[ht z, z, ~ i.i.d.N(0,1)
(2.23)

h , = a 0 + axRl ,  +  a 2 V ,* , - ,  +  A - .  +

The hypothesis of correlation changes driving the leverage effect in index 

volatility predicts that, after controlling for correlation dynamics in the extended GJR-C 

model, a.2 should decrease compared to the estimate in the standard GJR model, or even 

become statistically indistinguishable from zero. An insignificant a.2 would indicate that 

the conditional variance responds symmetrically to past returns, irrespective of their sign, 

and that only the absolute magnitude of Rt.i has any incremental effect on index volatility 

in addition to that of changes in the average correlation among the index’s constituents.

Panel A of Table 2.9 reports the results of the extended GJR-C model for the 

returns of the Dow Jones Industrial Average. The extended specification includes the 

lagged daily changes dpind.,-1 in the index’s average realized correlation as an exogenous 

variable in the equation of the index’s conditional variance, in an attempt to control for 

correlation dynamics when examining the leverage effect in DJIA index returns. In 

addition to the estimated parameters, the Table tabulates standard errors of fit as well as 

the corresponding z-statistics and p-values. Variance persistence and the two measures of 

asymmetry previously described are also presented.

As can be seen from Panel A, when equation (2.23) is estimated, aj slightly 

decreases from -0.0026 to -0.0040 and remains statistically insignificant (p-value is 0.67). 

More importantly, incorporating correlation changes does not appear to have any impact 

on the asymmetric responses of the conditional variance to lagged returns of opposite 

signs. This is reflected in the estimate ct2 of lagged negative returns which, instead of 

decreasing as the ‘diversification’ hypothesis predicts, experiences a small increase from 

0.1181 to 0.1201. Furthermore, the coefficient y for the lagged changes in correlation is 

statistically indistinguishable from zero at the 5% confidence level, and only marginally 

insignificant at the 10% level (p-value is 0.1071).
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Table 2.9

Estimates of Volatility Parameters for the DJIA using the extended GJR-C model

Panel A: ht = a0 +

Coefficient St. Error z-statistic p-value

do 0.0000 0.0000 4.13 0.0000
dl -0.0040 0.0093 -0.43 0.6681
a2 0.1201 0.0145 8.27 0.0000

P 0.9367 0.0094 99.82 0.0000

Y 0.0000 0.0000 -1.61 0.1071
Persistence 0.9927
Correlation -0.73
Ratio -0.03

Panel B: ht = a 0 + + a2s,-iRL  + A - i +  i +  r2s,-APind.,->

Coefficient St. Error z-statistic p-value

ok) 0.0000 0.0000 0.46 0.6462

di 0.0067 0.0106 0.63 0.5275

a2 0.0864 0.0153 5.64 0.0000

P 0.9375 0.0094 99.85 0.0000

Yi 0.0000 0.0000 1.59 0.1117

Y2 0.0000 0.0000 -4.13 0.0000

Persistence 0.9874

Correlation -0.67
Ratio 0.07
This Table tabulates the volatility estimates of the modified GJR-C model on the returns of the DJIA. The sample 

period is 30 March 1998 to 30 March 2007. Panel A presents the simple GJR-C model of unconditional correlation 

changes, while Panel B presents the extended GJR-C model of conditional correlation changes. ‘Correlation’ and 

‘ratio’ are measures of volatility asymmetry. P-values for the estimates on the DJIA are in parentheses. The standard 

errors of the conditional variance’s equation are assumed to follow a Student’s t distribution.

This inability of unconditional correlation dynamics to account for the index’s 

asymmetric volatility is also highlighted by the two asymmetry measures, namely 

correlation and the asymmetry ratio, the estimates of which are similar to those for the 

standard GJR specification in (2.12). Finally, the Likelihood Ratio Test (LRT) rejects the 

hypothesis that adding unconditional correlation changes as an exogenous regressor in 

the GJR’s variance equation results in a significantly better fit across the sample data.
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The LTR compares the likelihood score of the extended GJR-C in (2.23) to that of the 

standard GJR in (2.12), with the latter specification considered as a nested version of the 

former, by computing the following Likelihood Ratio (LR):

LR = 2 (L 1 -L 2 )  (2.24)

where L I  and L2 refer to the Likelihood scores of the GJR-C and of the GJR 

specifications, respectively. Given that the GJR model is a nested version of the GJR-C, 

L I  will be higher than L2 merely due to the use of an additional explanatory variable. 

However, whether using an additional variable is justified by a significantly better fit can 

be determined by comparing LR  with a critical value under the assumption that the ratio 

approximately follows a chi-square distribution. Across the DJIA sample in this study, 

the above LR  is equal to 1.66. Since the critical value at the 5% confidence level and with 

one degree of freedom is 3.84, the relatively low LR indicates that incorporating Apind,t-i 

in the specification does not result in a significantly better fit compared to the standard 

GJR.

The above results seem to cast some doubt on the hypothesis of correlation 

changes driving asymmetric volatility in index returns. In addition to the slight increase 

of the coefficient for the additional response of index variance to negative returns, 

correlation innovations are not found to be significantly correlated with the index’s 

conditional variance. This finding stands in contrast to the previously reported positive 

comovement between realized index volatility RV  and average realized correlation p ind, 

and does not support the ‘diversification effect’ explanation of asymmetric index 

volatility. This initial rejection of the ‘diversification’ hypothesis is particularly puzzling 

given that correlation changes were found to be negatively correlated with index returns, 

and that this relationship was stronger for negative returns compared to positive ones.

In addition to the general specification in (2.23), an alternative version of the 

GJR-C model is examined, in which the relationship between the conditional variance 

and changes in the index’s average correlation is conditional upon the sign of past index 

returns, as given by the st-i dummy. The specification in (2.25) effectively explores 

whether the impact of correlation changes on the index’s variance depends on the
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direction of index movements. Similarly to distinguishing between the impact of past 

positive and negative returns through the pair of coefficients aj and a.2 , the coefficients yj 

and j 2 measure the effect of correlation changes on the index’s conditional variance in the 

case of up and of down markets, respectively.

h, = a .+ a f i l  + a2sl_X_] + A - i  + r ,A /W , + y2s,_APm < t (2.25)

Panel B of Table 2.9 reports the results for the above version of the GJR-C. When 

the effect of correlation changes is combined with the use of the dummy st.j for the sign 

of past index returns, the intercept ao remains close to zero but becomes statistically 

insignificant (p-value is 0.67), while the coefficient /? for the first lag of the conditional 

variance remains at approximately the same level (0.9375). More importantly, though, 

the lack of explanatory power of Apind,t-i over the DJIA’s conditional variance now 

appears to be limited only to up markets. The coefficient yj of lagged correlation changes 

conditional on a positive lagged index return is very close to zero and statistically 

insignificant (p-value is 0.11), similarly to the estimate of y in (2.23). On the other hand, 

correlation changes that coincide with a negative index return have a statistically 

significant impact, measured by 72 which, although admittedly small in magnitude, has a 

p-value of zero.

Furthermore, separating the effect of correlation changes in up and in down 

markets results in a less pronounced ‘asymmetric volatility’ phenomenon in the DJIA 

returns. First, the coefficient aj of lagged positive returns experiences a small increase 

while remaining statistically indistinguishable from zero. More noticeably, the coefficient 

ct2 of the additional impact of lagged negative returns decreases significantly to 0.0864 

compared to the estimate of the standard GJR model (where 0(2 = 0.1181) and to that of 

the extended GJR-C model in (2.23) (where a2 = 0.1201). This reduction in the 

asymmetric response of index volatility to past returns of different signs can be further 

demonstrated by the changes in the ‘asymmetry ratio’ and the ‘correlation’ measures. The 

‘correlation’ measure, in particular, increases from -0.73 to -0.67 while the ‘asymmetry 

ratio’ increases from -0.03 to 0.07, with higher (or less negative) values for both 

measures indicating a weaker asymmetry in the index’s conditional variance. Finally, the
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respective Likelihood Ratio LR is 13.73. Given that the critical value at the 5% level and 

with two degrees of freedom is 5.99, the relatively high LR does not reject the hypothesis 

that adding conditional correlation changes in the standard specification results in a 

significantly better fit across the sample data.

Overall, accounting for the dynamics of the DJIA’s average realized correlation 

results in a reduction of the observed asymmetry in the index’s volatility process. Not 

surprisingly, correlation changes are found to be significantly correlated with the index’s 

conditional variance when the index falls, while their comovement is much weaker when 

the index rises. This asymmetric relationship between correlation changes and volatility 

is in line with previous empirical studies which suggest that the so-called ‘leverage 

effect’ might be more appropriately considered as a ‘down-market’ effect. Although 

index volatility tends to increase after negative index returns and, to a lesser extent, 

decrease after positive returns, the return’s magnitude is found to have a somewhat 

smaller impact on this relationship than that previously documented. Moreover, the 

inability of unconditional correlation changes to explain the index’s volatility process 

contrasted to the significant coefficient of the conditional variable indicates that 

correlation dynamics alone cannot substitute the effect of a dummy variable for the sign 

of market movements within a GARCH framework. However, given that the coefficient 

a2 for lagged negative returns decreases after introducing the conditional Apindj.i, 

correlation changes seem to absorb some of the explanatory power of the magnitude of 

past returns which, nevertheless, remains significant.

2.7 Conclusion

This Chapter has examined the widely reported asymmetric volatility of index returns 

from the perspective of the ‘diversification effect’, using data on the Dow Jones 

Industrial Average across a ten-year period. When asymmetric GARCH models are fitted 

on index returns, it is commonly found that the conditional variance experiences an 

increase after negative returns that is higher compared to decreases following positive 

returns of similar magnitude. Moreover, this finding is significantly more pronounced for 

indices than for individual stocks, highlighting a fundamental difference between the
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volatility processes of these two asset classes. In contrast to previous explanations 

referring to a ‘leverage effect’ or to ‘volatility feedback’, this study explores whether 

changes in the correlations among the index constituents can account for the observed 

volatility asymmetry.

A set of initial results is presented that is consistent with the ‘diversification 

effect’ hypothesis. More specifically, the average realized correlation of the DJIA is 

found to be negatively correlated with index returns, confirming that diversification 

opportunities reduce in down markets where the majority of stocks move more closely 

together. This relationship is found to be asymmetric, with correlation increases 

coinciding with negative index returns being higher than correlation decreases during 

positive returns. Furthermore, the average correlation is positively related to the index’s 

realized volatility, indicating that periods of high (low) volatility are also characterized 

by high (low) correlations among the constituent stocks.

Within a GARCH framework, evidence is provided that changes in the average 

correlation among the constituents are directly linked to the asymmetric conditional 

variance of the parent index. Estimating an extension of the GJR specification, where 

conditional innovations in the average index correlation are included as an exogenous 

regressor, results in a lower coefficient of past negative returns compared to that of the 

standard model. Higher estimates of two asymmetry measures, namely the ‘correlation’ 

and the ‘asymmetry ratio’, also suggest that volatility asymmetry in DJIA index returns is 

less pronounced after controlling for correlation dynamics.

In addition, correlation changes are significantly related to the conditional 

variance in down markets and only weakly correlated in up markets. This asymmetric 

comovement supports previous empirical findings that refer to the ‘leverage’ effect as a 

‘down-market’ effect, since the direction of past market movements remains highly 

significant in explaining the index’s conditional variance. Therefore, given the inability 

of unconditional correlation changes to explain the asymmetric volatility in DJIA returns, 

it appears that conditional correlation changes in fact absorb some of the explanatory 

power of the magnitude of lagged index returns. However, it has to be noted that 

accounting for correlation dynamics does not fully explain the asymmetry of the
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conditional variance, and that the sign as well as the magnitude of past returns are still 

highly significant in predicting future index volatility.
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Chapter 3

The Asymmetric Impact o f Firm-Specific and o f Index Returns 

on the Volatility Processes o f Individual Stocks

3.1 Introduction
3.1.1 Literature Review

ARCH models have been increasingly popular in describing the returns generating 

process of stocks and of indices, with a large number of studies reporting that volatility 

processes tend to be highly persistent at a daily frequency. However, the high volume of 

related papers has highlighted some significant differences between the volatility 

processes of individual stocks and of indices. Arguably one of the most important 

differences refers to the extent to which volatility responds negatively and 

asymmetrically to past returns, with this well-documented empirical irregularity usually 

termed the ‘volatility asymmetry’ phenomenon.

The stylized fact that volatility is negatively correlated with stock returns, and that 

this correlation is conditional on the return’s sign, has been examined by Black (1976) 

and by Christie (1982). These were among the first papers to show that volatility 

increases after negative returns tend to outweigh volatility decreases following positive 

returns of similar magnitude, and both related this asymmetry to changes in leverage. The 

intuition behind the terms ‘leverage effect’ and ‘volatility asymmetry’ being used almost 

interchangeably in the early literature is that a negative return will result in an increase of 

a firm ’s debt-to-equity ratio (i.e. its leverage), and this will be reflected in an increase of 

the underlying equity risk and a higher equity volatility.

A second stream of the literature has proposed ‘volatility feedback’ as an 

alternative explanation for asymmetric volatility. This line of thought reverses the 

causality by suggesting that an increase in volatility at time t will result in an increased 

risk-premium at t+1 to compensate investors for bearing more risk. Increased risk- 

premia, though, at t+1 are equivalent to a decreased stock price at t, thereby introducing a
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negative contemporaneous relationship between stock returns and volatility. The 

volatility feedback explanation has been examined by Campbell and Hentschel (1992), 

French, Schwert and Stambaugh (1987) and Smith (2007), while comparative analyses of 

the two hypotheses have been conducted by Bekaert and Wu (2000) and Bollerslev, 

Litvinova and Tauchen (2006).

Kim and Kon (1994) focus on thirty large-capitalization stocks as well as on three 

indices, and find that individual stock volatilities are significantly less asymmetric than 

index volatilities. Similar conclusions have also been reached by Tauchen, Zhang and Liu 

(1996) and by Blair, Poon and Taylor (2002). This discrepancy between stocks and 

indices, however, cannot be accommodated by either the ‘leverage effect’ or the 

‘volatility feedback’ explanations, since the fundamental causes for the asymmetry do not 

depend on the asset class examined.

The possibility of market-level influences driving the ‘asymmetric volatility’ 

phenomenon has been discussed by Figlewski and Wang (2000) who examine a large 

sample of S&P 100 stocks as well as the index itself. After accounting for changes in the 

debt-to-equity ratio, they find that leverage changes cannot adequately explain changes in 

the realized and in the implied volatility of the sample stocks, especially in up markets. 

The authors then conclude that the ‘volatility asymmetry’ phenomenon could be more 

appropriately described as a ‘down-market’ effect that is not necessarily related to 

changes in leverage or to volatility feedback.

Finally, the present study is directly related to the findings by Stivers, Dennis and 

Mayhew (2006). Assuming that implied volatility acts as an observable proxy for 

expected return volatility, they define the ‘asymmetric volatility’ phenomenon as the 

relationship between returns and innovations in implied volatility. Focusing on the US 

equity market, Stivers, Dennis and Mayhew (2006) report that, although index returns are 

strongly negatively correlated with changes in index implied (systematic) volatility, 

individual stock returns exhibit only a weak correlation with changes in firm-specific 

implied (idiosyncratic) volatility. This could be interpreted as additional evidence of a 

more pronounced asymmetry effect in the case of indices compared to individual stocks. 

However, stock returns are found to exhibit a significant negative correlation with 

innovations in systematic volatility, i.e. in index implied volatility, a result that is
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consistent with the hypothesis of ‘asymmetric volatility’ being driven by market factors 

rather by changes in leverage or by volatility feedback.

3.1.2 Scope of Study

This Chapter examines the ‘volatility asymmetry’ phenomenon in the returns of 

individual stocks. Previous empirical papers have reported that the volatility processes of 

stocks differ significantly from those of indices, particularly in being less asymmetric 

with respect to past returns of opposite signs. Given that the two most common 

explanations for asymmetric volatility, namely the ‘leverage effect’ and ‘volatility 

feedback’, are not able to reconcile the above difference, this analysis focuses on the 

hypothesis that asymmetric volatility is in essence a ‘down-market’ effect, proposed, 

among others, by Figlewski and Wang (2000). Within this framework, the possibility is 

explored that the conditional variance of individual stocks is asymmetrically correlated 

with past market returns instead of (or in addition to) firm-specific returns.

The sample consists of the returns of the thirty Dow Jones’s constituents across 

the ten-year period from January 1998 to December 2007. When a standard asymmetric 

GJR model (developed by Glosten, Jagannathan and Runkle (1993)) is estimated, 

individual stock volatilities are shown to be significantly less asymmetric than the index’s 

volatility, confirming previous empirical findings. In order to directly examine the impact 

of market-shocks on the stocks’ conditional variances, a modification of the GJR is 

tested, termed GJR-I, where the lagged signed returns of the index have replaced the 

lagged signed firm-specific returns. First, it is found that individual stock volatilities are 

significantly correlated with past index returns. Moreover, volatilities respond 

asymmetrically to returns of opposite signs, with volatility increases after a negative 

market return being on average higher than volatility decreases after a positive market 

return of similar magnitude. This asymmetry is generally more pronounced compared to 

the one observed in the standard GJR model, based on the standard ‘asymmetry ratio’ 

measure.

In addition to the standard GJR-I, an extension is estimated where the conditional 

variance responds to lagged signed firm-specific returns as well as to market returns.
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When the two factors are jointly incorporated into the model, the majority of individual 

stock volatilities are still found to be more asymmetric with respect to ‘bad’ systematic 

news than to ‘bad’ idiosyncratic news. Overall, the ‘down-market’ effect appears to be 

present in the volatility processes of the components of the DJIA and goes some way into 

explaining the observed difference in the asymmetry phenomenon between individual 

stocks and the parent index.

The remaining of the Chapter is organized as follows: Section 3.2 presents the 

data used in the empirical analysis, while Section 3.3 reports the results of estimating the 

standard GJR specification across the thirty sample stocks and the index. Section 3.4 

discusses the modified GJR-I model in which market returns have replaced firm-specific 

ones, and Section 3.5 discusses the extended GJR-I model where the conditional variance 

responds to both market and stock returns. Finally, Section 3.6 concludes.

3.2 Data

The stock data used in this Chapter was obtained from the Wharton Research Data 

Services (WRDS) database. The data covers the decade from the 5th of January 1998 to 

the 31st of December 2007 for a total of 2,514 trading days. The sample consists of 

closing prices for the thirty components of the Dow Jones Industrial Average index 

across this ten-year period, based on the index’s composition as of the 21st of November 

2005. The thirty component stocks of the DJIA that are examined in this Chapter are 

presented in Table 3.1 which includes company name, company ticker, and date of entry 

in the index where applicable, i.e. if a firm entered the index after the beginning of the 

sample period.
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Table 3.1

Composition of the DJIA

Company Name Ticker
Date of 

Entry

Average Market 

Capitalization 

($ billion)

Annualized

Volatility

Aluminum Company of America (Alcoa) AA 25.80 0.19
American International group Incorporated AIG 08/04/2004 167.61 0.16
American Express Company AXP 60.84 0.18
Boeing Company BA 43.44 0.17
Citigroup C 206.15 0.18
Caterpillar Incorporated CAT 24.78 0.17
DuPont DD 47.99 0.15
Walt Disney Company DIS 52.90 0.18
General Electric Company GE 371.16 0.15
General Motors Corporation GM 24.01 0.20
Home Depot Incorporated HD 01/11/1999 87.41 0.18
Honeywell International HON 02/12/1999 31.90 0.19
Hewlett-Packard Company HPQ 75.06 0.23
International Business Machines IBM 158.45 0.17
Intel Corporation INTC 01/11/1999 169.45 0.24
Johnson & Johnson Company JNJ 161.69 0.12
J.P. Morgan & Company JPM 88.05 0.19
Coca-Cola Company KO 124.33 0.13
McDonald’s Corporation MCD 42.24 0.15
Minnesota Mining & Mfg (3M Company) MMM 50.27 0.13
Philip Morris Companies Inc (Altria Group) MO 113.56 0.16
Merck & Company Inc MRK 119.98 0.15
Microsoft Corporation MSFT 01/11/1999 318.26 0.18
Pfizer Incorporated PFE 08/04/2004 194.10 0.16
Procter & Gamble Company PG 142.33 0.13
AT&T Corporation T 65.51 0.20
United Technologies Corporation UTX 41.71 0.15
Verizon Communications Incorporated VZ 08/04/2004 106.35 0.15
Wal-Mart Stores Incorporated WMT 220.95 0.16
Exxon Corporation (Exxon Mobil) XOM 304.20 0.13
Dow Jones Industrial Average DJIA 3,640.46

_ e  . i  A i S t  _ r v T _  ___ i.
0.09

This Table reports the constituent stocks of the Dow Jones Industrial Average as o f the 21s1 of November 2005. The last 
column includes the (annualized) standard deviation of daily returns for each individual stock as well as for the parent 
index across the entire sample period January 1998 to December 2007.

The securities’ closing prices in the WRDS files have been adjusted for dividends 

and for changes in the firm s’ capital structure. The GARCH specifications that are 

examined use daily log-retums across the thirty sample stocks, computed as the 

difference between the logarithms of two consecutive closing prices:

Ru = log(p , , ) - log (A , ,_ i ) (3.1)
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where Ritt is the daily return of asset i at time t, and p iit is the ith asset’s closing price at t. 

Daily closing prices for the Dow Jones index, adjusted for dividend distributions, were 

obtained from DataStream and corresponding logarithmic returns were computed using 

equation (3.1).

Table 3.2

Constituents Capitalization ($ million)

Median Lq Uq n

97,196 48,557 166,132 30

75,062 45,711 150,390 23

167,611 96,878 181,775 7
This Table tabulates summary statistics of the average market capitalisation of the thirty constituent stocks o f the Dow 

Jones Industrial Average for the sample period January 1998 to December 2007. The market capitalisation of each 

stock is computed as the geometric mean of the year-end market capitalisation across the sample period. Lq and Uq refer 

to the first and to the third quartile, respectively, while n denotes the number of stocks included in the respective group. 

The terms ‘Survivors’ and ‘Entrants’ refer to companies that were included in the index’s composition throughout the 

entire period and to companies that entered the index after the 5th of January 1998, respectively.

Table 3.2 presents summary statistics on the sample firms with respect to their 

size. Size is expressed in millions of dollars and it is proxied by the geometric mean of 

each firm’s market capitalisation at year end across the ten-year sample period. As can be 

seen from the Table, the median firm has an average market capitalisation of $97.20 

billion although size varies significantly across the thirty firms. A quarter of the stocks 

have market capitalisations less than $48.56 billion while another quarter of the stocks 

have an average market value of more than $166.13 billion. Furthermore, there is a 

obvious difference between the size of firms that were included in the index throughout 

the entire period, i.e. ‘Survivors’, and that of firms that entered the index after the 

beginning of the sample period, i.e. ‘Entrants’. Firms in the ‘Entrants’ group are clearly 

larger than those in the ‘Survivors’ group, with the median ‘entrant’ having a market 

capitalisation of $167.61 billion, compared to $75.06 billion for the median ‘survivor’.

Table 3.3 reports descriptive statistics on the returns distributions of the Dow 

Jones and of the thirty constituent stocks. The first four moments, the minimum and 

maximum values of the returns distribution are presented for the index as well as for the 

median, lower and upper quartile stocks, while the last column of the Table tabulates the

All Stocks 

Survivors 

Entrants
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number of stocks for which the respective statistic has a value greater than that of the 

index. Throughout the period January 1998 to December 2007, the DJIA appreciated by 

an average of 0.88 basis points per day, compared to a slightly higher average daily 

return of 0.92 bps for the median stock. Not surprisingly, as a result of diversification, the 

index was characterized by a much smaller variance of returns (0.22  bps on a daily basis) 

than all thirty stocks. The lower return variability in the case of the DJIA is also 

evidenced by the smaller (absolute) magnitudes of the maximum and minimum values, 

with all thirty individual stocks exhibiting higher absolute extreme observations. Finally, 

although index skewness is very close to that of the median stock, all thirty individual 

returns distributions are significantly more leptokurtotic (kurtosis for the lower quartile 

stock is 6.71) than that of the Dow Jones (kurtosis = 3.67).

Table 3.3

Summary Statistics of the Daily Returns on the DJIA and its Constituents

Summary

Statistics
Index

Stocks

Median Lq u q
Greater than 

Index

Mean x 104 0.88 0.92 0.31 1.27 17
Variance x 104 0.22 0.73 0.61 0.92 30

Skewness -0.15 -0.14 -0.23 0.02 16
Kurtosis 3.67 7.68 6.71 10.43 30
Max 0.03 0.05 0.04 0.06 30
Min -0.03 -0.06 -0.08 -0.05 0
This Table tabulates summary statistics o f the daily returns of the DJIA index and of its thirty constituents. The sample 

period is 5 January 1998 to 31 December 2007.

3.3 Volatility Asymmetry with respect to Firm-specific Returns

In this study, the volatility process of the Dow Jones constituent stocks is modelled by the 

Glosten, Jagannathan and Runkle (1993) extension of the ARCH specification. The 

GJR(1,1) model is defined by the following equations for the mean and for the 

conditional variance of the returns generating process (see also equation (2 .12) in the 

previous Chapter):
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(3.2)

(3.3)

where s(>y is a dummy variable that takes the value of one if the lagged stock return is 

negative, and that of zero otherwise. The asymmetry property is incorporated into the 

conditional variance equation by the use of two separate coefficients for lagged positive 

and negative returns, namely ay and «2, respectively, such that ay describes the impact of 

lagged positive returns on the conditional variance while aj describes the additional 

impact of lagged negative returns. A positive and significant a.2 suggests that the stock 

variance’s response to a negative return is more pronounced compared to a positive one 

of similar absolute magnitude, with volatility increasing by more following a depreciation 

than an appreciation of the same size.

In addition to jointly examining the magnitude and significance of ay and a.2 , the 

extent to which the conditional variance responds asymmetrically to past returns of 

different signs can be determined by the ‘asymmetry ratio’, estimated using equation

(3.4) (see also equation (2.14) in Chapter 2). As has already been mentioned, lower 

values of this ratio suggest a more pronounced asymmetry in the conditional variance.

Table 3.4 presents the results from estimating the standard GJR(1,1) model on the 

returns of the DJIA as well as on those of its thirty components in Panels A and B, 

respectively. In the case of the index, the intercept ao is significant with a p-value of 0.00, 

albeit small in magnitude, and the coefficient ay for lagged positive returns is statistically 

indistinguishable from zero (p-value is 0.72). Moreover, the estimated parameters 

indicate that the volatility process of the parent index is highly asymmetric since the 

coefficient a2 for the additional impact of lagged negative returns is relatively high (0 .12) 

and statistically significant (p-value is 0.00). This pronounced asymmetry in index 

returns can be further evidenced by the low ‘asymmetry ratio’ which takes the value of -

Asymmetry Ratio a\ + a. (3.4)
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0.02. Finally, the coefficient /? for the lagged conditional variance is 0.9318 and the

(X
volatility persistence of the process is estimated at 0.9892 (or, + -^ - + / ? ).

Table 3.4 

Estimation of the Standard GJR

K = a o  +  o ^ - i  +  o w . X - .  +  A , - .

Panel A: Estimated Parameters for the Index

a0 a, a2 P Ratio

0.0000

(0.00)

-0.0026

(0.72)

0.1200

(0.00)

0.9318

(0.00)
-0.02

Panel B: Estimated Parameters for the Constituent Stocks

a0 a. o2 P Ratio

Median Coefficient 0.0000 0.0517 0.0466 0.9072 0.23

Greater than Index 29 26 11 7 26

This Table reports the results from estimating the standard GJR(1,1) model on the returns o f the DJIA and on those of 

its constituent stocks. The sample runs from January 1998 to December 2007. P-values on the coefficients o f the index 

in Panel A are given in brackets. ‘Ratio’ is a measure of volatility asymmetry.

As can be seen from Panel B, the conditional variance processes of the thirty 

constituents of the Dow Jones differ significantly from that of the parent index, 

particularly with respect to the ‘volatility asymmetry’ effect. The median intercept is very 

close to zero but statistically significant, and 29 out of the 30 stocks have intercepts that 

are higher than that of the index. In contrast to the DJIA, the effect of past positive 

returns is statistically significant for the majority (26) of the stocks, while aj for the 

median stock is 0.0517. More importantly, though, individual stocks’ variances appear to 

be less asymmetric compared to the index. The coefficient for the additional impact of 

lagged negative returns on the conditional variance, as measured by ct2, is 0.0466 for the 

median stock, compared to 0.1200 for the Dow Jones. Also, more than two thirds of the 

sample stocks have a.2 s that are smaller than that of the index, suggesting that negative 

returns in the case of individual stocks have a less extreme incremental impact on 

volatility than that which is the case for the index.
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The higher value of the ‘asymmetry ratio’ provides further support for the above 

finding. More specifically, the median ‘asymmetry ratio’ is 0.23, compared to -0.02 for 

the DJIA, while 26 out of the thirty stocks have higher (or less negative) ‘ratios’ than that 

of the index and, given that lower ‘ratio’ values are associated with higher asymmetry, it 

is concluded that volatility asymmetry across the vast majority of the DJIA’s constituent 

stocks is significantly less pronounced than that of the parent index.

3.4 Volatility Asymmetry with respect to Market Returns

The previous Section documented that the volatility processes of almost all the individual 

components of the Dow Jones are characterized by a less severe asymmetry with respect 

to past returns of opposite signs when compared to the volatility process of the index. 

This Section examines the possibility of individual stocks’ variances having an 

asymmetric response to ‘news’ on the market as opposed to firm-specific ‘news’. A 

modified GARCH model is fitted on the returns of the thirty DJIA constituents, which, 

similarly to the standard GJR, includes signed lagged returns as regressors in the variance 

equation. However, contrary to the GJR, the above returns are market returns, proxied by 

the returns of the Dow Jones. The mean equation of this modification of the GJR, termed 

GJR-I, is the same as in the standard model, while the variance equation is given in (3.5):

h i , t = & S I ND, t - l ^ i ND, t - \  ^  (3.5)

where Rind.i is the return of the DJIA index at time t, and the dummy variable siND>,.] takes 

the value of one if the lagged index return R jn d j-i is negative and the value of zero 

otherwise. Within this framework, the firm-specific volatility process responds to market 

shocks but not to firm-specific shocks, suggesting that stock volatility increases at down- 

markets and increases at up-markets, while past stock returns do not affect stock 

volatility. Similarly to the standard GJR specification, a[ND measures the symmetric 

impact of new systematic information, and a[ND captures the additional impact of ‘bad’ 

systematic information, i.e. of a negative lagged market return.
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Panel A of Table 3.5 presents the results from estimating the GJR-I model across 

the thirty components of the Dow Jones. The Table reports the estimated coefficients of 

interest for the median stock as well as the number of stocks for which the respective 

parameter has a value that is greater than that of the index. Obviously, in the case of the 

DJIA the GJR-I is equivalent to the standard GJR specification since market returns are 

also asset-specific returns for the market index, so that the estimated GJR-I parameters 

for the index are the same as those reported in Panel A of Table 3.4. Moreover, the 

modified ‘asymmetry ratio’ is given by equation (3.6) where a ‘xm  and a'2ND have replaced 

aj and a2, respectively.

Modified a[ND

Asymmetry Ratio + a™D

The median intercept ao is again very close to zero but remains statistically 

significant for most of the sample stocks. The coefficient a 'ND for the symmetric 

response of the conditional variance to lagged systematic innovations is 0.0157 for the 

median stock, which is relatively low when compared to its respective value of 0.0517 in 

the standard GJR specification. It appears, thus, that the symmetric impact of lagged 

index returns on the volatility of individual stocks is, on average, smaller than that of 

lagged firm-specific returns. However, the asymmetric effect is more pronounced with 

respect to market returns. The median a™D is 0.1588, compared to a a2 of 0.0466 for the 

median stock in the GJR (see Panel B of Table 3.4), indicating that the additional 

response of individual stock volatility to ‘bad’ market news is more than three times the 

magnitude of its response to ‘bad’ idiosyncratic news. Furthermore, the effect of negative 

lagged index returns for the median stock is higher even when compared to the index’s 

conditional variance, for which the respective coefficient a2 was 0.12, while more than 

half of the sample stocks (17 out of 30) have a™D coefficients that are higher than the a2 

of the index.

The extent to which individual stock return volatilities respond asymmetrically to 

past index returns of opposite signs can be directly examined through the modified
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‘asymmetry ratio’ which, as can be seen from Table 3.5, is 0.07 for the median stock. 

Given that the median standard asymmetry measure was 0.23, and that lower values are 

associated with a more pronounced volatility asymmetry, it appears that the conditional 

variance of the median stock is characterized by a more severe asymmetry with respect to 

negative market returns compared to negative firm-specific returns. In addition, when the 

modified measure is considered, only 17 out of the 30 individual stocks have higher 

ratios than that of the DJIA and, thus, exhibit lower asymmetry than that of the index. 

This result differs considerably from the one obtained when the standard GJR 

specification was estimated, when the majority of stock volatilities (26 out of 30) were 

found to be less asymmetric than the index’s volatility.

Table 3.5 

Estimation of the GJR-I

Panel A: Estimated Parameters for the GJR-I

. ,+ # 2  S lN D ,t- l^ IN D ,t- \ ^

0.0
IND

a \ a [ m Ratio

Median Coefficient 0.0000 0.0157 0.1588 0.07
Greater than Index 21 17 17 17

Panel B: Estimated Parameters for the Extended GJR-I

K ,  = « 0  +  « , + a ! m R ,
2 , fy IND „ E>2
W D ,t-\ 2 IND ,t-\ IND,t-\ + P K t - \

Median u Greater than Index

0.0497 0.0094 0.2140 25
Stock Returns -0.0030 -0.0871 0.0814 7

Ratio o.41 0.01 2.18 24
IND

a \ 0.0329 -0.0364 0.1988 21

Index Returns IND
a 2 0.1356 0.0202 0.2709 16

Ratio o.34 0.00 0.46 23
This Table reports the estimated parameters of the modified GJR-I specification across the thirty constituent stocks of 
the DJIA from January 1998 to December 2007. Panel A refers to the standard GJR-I, while Panel B refers to the 
extended GJR-I model. Lq and Uq denote the lower and upper quartiles, respectively. Ratio is a measure o f volatility 
asymmetry.

68



www.manaraa.com

3.5 Volatility Asymmetry with respect to both Market and Stock 

Returns

The previously examined GJR-I specification describes a stock’s variance process under 

the relatively limiting assumption that volatility responds only to market movements and 

that it is uncorrelated with firm-specific stock movements. In order to relax this 

limitation, an extension of the GJR-I model is estimated, where the individual stock’s 

conditional variance responds asymmetrically to past index returns as well as to past 

firm-specific returns. The equation of the conditional variance in the extended GJR-I is 

given in (3.7) and the estimated parameters of the new specification across the thirty 

DJIA components are presented in Panel B of Table 3.5. The Table reports the median, 

lower and upper quartile values of the coefficients of interest, i.e. the coefficients that 

capture the impact of past signed firm-specific and index returns, across the thirty sample 

stocks. The last column of Panel B tabulates the number of stocks for which the 

respective coefficient has a value that is greater than that of the index. The results are 

grouped into two sets, where the first set refers to firm-specific innovations and includes 

a}, a.2 and the standard asymmetry measure, while the second one refers to market 

innovations and includes a [ND, a[ND and the modified asymmetry measure.

K  ~  &Q  +  ^ 2 ‘V l ^ U - l  ^ I N D .t - 1 ^ 2  S I N D , t - l ^ I N D ,t - \  P \ , t - \  (3-7)

When the effects of idiosyncratic and of systematic innovations are jointly 

examined, the difference in the volatility’s asymmetric response to the two factors 

somewhat decreases. The coefficient aj that captures the impact of lagged positive firm- 

specific returns is found to be generally higher than the respective coefficient a lND that 

captures the impact of lagged positive market returns. More specifically, the median a t is 

0.0497, compared to a median a[ND o i 0.0329, while similarly the lower and upper

quartiles of a; are both higher than those of a[ND (0.0094 and 0.2140 compared to - 

0.0364 and 0.1988, respectively).
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On the other hand, the additional impact of lagged negative returns is clearly still 

higher in index returns than in individual stock returns. The median a l2ND is 0.1356 while

the median a.2 is very close to zero and slightly negative at -0.0030. Furthermore, the 

asymmetry ‘ratio’ is on average higher, i.e. less asymmetric, than the respective modified 

asymmetry measure. The median stock has a ratio of 0.41, compared to a modified ratio 

of 0.34, while 19 out of the 30 sample stocks exhibit a more pronounced asymmetry with 

respect to past index returns than to past firm-specific returns.

Overall, the thirty components of the Dow Jones are found to be characterized on 

average by a more pronounced volatility asymmetry with respect to ‘bad’ market news 

than to ‘bad’ idiosyncratic news. In other words, negative market innovations appear to 

have a more extreme additional impact on the conditional variance of individual stock 

returns compared to negative firm-specific innovations. Also, when volatility asymmetry 

is examined within the GJR-I framework of market returns, the results cast some doubt 

on the previously reported empirical finding of stock volatilities being less asymmetric 

than those of indices.

3.6 Conclusion

This Chapter has examined the volatility processes of the individual stocks that are 

included in the Dow Jones index, from the perspective of the asymmetric response of 

volatility to past returns of opposite signs. Previous studies have documented that 

individual stock variances are usually less asymmetric compared to index variance and, 

although little has been done towards explaining this difference, this has been generally 

accepted as a property of the returns generating process of individual stocks.

When the standard GJR model is fitted on the returns of the thirty DJIA 

constituents, the results are in line with previous empirical findings in the sense that, even 

though volatility asymmetry varies across the sample stocks, the vast majority of the 

components of the Dow Jones are less asymmetric than the index. In addition to a 

moderate volatility asymmetry with respect to past firm-specific returns, this study 

proposes that individual stocks’ conditional variances respond asymmetrically to signed 

past returns of the market. Estimating a modification of the GJR model, termed GJR-I,
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where signed lagged index returns have replaced firm-specific returns, indicates that 

stock returns are significantly correlated with market returns. Furthermore, individual 

stock volatility is found to increase by more following ‘bad’ market news compared to 

‘good’ market news, and this asymmetry is on average more pronounced compared to the 

one indicated by the standard GJR.

The above results still hold after estimating an extension of the GJR-I 

specification, where the conditional variance of individual stocks is a function of signed 

lagged firm-specific returns as well as of market returns. When the two factors are jointly 

incorporated into the model, the thirty individual stock volatilities are generally 

correlated with both idiosyncratic and systematic innovations, but the additional impact 

of negative systematic innovations on the conditional variance is on average higher than 

the additional impact of negative idiosyncratic innovations. Overall, the empirical 

findings of this Chapter are consistent with the hypothesis that volatility asymmetry is in 

essence a ‘down-market effect’, not necessarily attributed to changes in leverage or to 

volatility feedback.
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Chapter 4

An Examination o f the Forward Premium Puzzle Using Option

Implied Information

4.1 Introduction

4.1.1 Literature Review

The forward premium puzzle refers to the widely observed rejection of the forward 

premium as a conditionally unbiased predictor of future spot exchange rate returns. When 

exchange rate returns are regressed on the lagged forward premium/discount, interest rate 

parity predicts a slope coefficient equal to one. However, a vast body of the related 

literature reports a coefficient less than the theoretical value of unity and, in most cases, 

significantly negative. For instance, McCallum (1994), using yen, mark and pound rates 

against the dollar for the period 1978-1990, estimates a slope coefficient of -4, an 

estimate that is considered typical o f such studies. Other studies that report negative 

coefficients include Backus, Gregory and Telmer (1993), Mark, Wu and Hai (1993), 

Froot and Frankel (1989), and Byers and Peel (1991). According to the Uncovered 

Interest Rate Parity (UIP) condition, this translates to an appreciating currency for the 

country with the higher nominal interest rate. Finally, Hodrick (1987) and Engel (1996) 

provide comprehensive surveys o f the forward premium puzzle literature.

The variety of explanations that have been suggested to account for the forward 

premium anomaly indicates that researchers so far have failed to reach a consensus with 

respect to the source of this negative correlation between the forward rate and exchange 

rate returns. One of the most common explanations proposed has been the presence of a 

time-varying risk premium, defined as the difference between the forward rate and the 

conditional expectation of the future spot rate, with the risk premium assumed to be 

negatively correlated with expected spot rate returns. More specifically, one stream of the 

literature has taken the risk premium to be exogenous and attempted to explore whether 

its variance and magnitude can account for some of the forward premium bias. Boyer and
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Adams (1988) and McCallum (1994) have focused on this direction and, although their 

models were able to produce a negative value of the forward premium’s slope coefficient, 

Engel (1996) argues that ‘...it seems unlikely that the behaviour of rptre (risk-premium

at time t under rational expectations) in these models could be reconciled with existing 

models of risk-averse behaviour’.

Another line of thought has focused on the presence of a systematic forecast error 

in the forward premium that is related to the way investors form expectations about future 

levels of exchange rates. For instance, Lewis (1994) and Evans (1995) argue that 

previous empirical findings might be inconclusive due to the use of small samples and the 

occurrence of infrequent extreme events, a combination that is likely to make spot returns 

appear predictable (a phenomenon that is usually referred to as the ‘peso problem’). 

Moreover, Gourinchas and Tomell (2004) develop a model where markets determine 

nominal exchange rates according to whether interest rate shocks are perceived to be 

transitory or persistent. Within this framework, Gourinchas and Tomell (2004) suggest 

that a large portion of the forward rate bias can be explained if ‘...investors misperceive 

shocks to be more transitory than what they actually are’. Finally, Bacchetta and 

Wincoop (2007, 2008) examine the forward premium puzzle from the perspective of 

managing currency portfolios. Assuming that active management of short-term currency 

positions can be problematic due to the ‘unpredictability’ of future spot rates, Bacchetta 

and Wincoop find that infrequent rebalancing of FX portfolios combined with incomplete 

information processing can lead to ‘delayed overshooting’, where exchange rates 

continue to adjust to changes in interest rates long after the initial shock.

In contrast to the above negative bias being driven by investors’ expectation- 

forming process, other papers suggest monetary policy interventions as a potential factor. 

More specifically, assuming that monetary authorities set a target band o f exchange rates, 

they are likely to intervene after a large shock in the spot rate by changing the interest 

rate in order to offset the shock and return to the target band (see McCallum (1994)).

A number of more recent studies has documented that the predictive ability of the 

forward rate on future spot rates appears to be significantly related to the forecasting 

time-horizon. This line of research suggests that, although the anomaly is pronounced 

when medium-term forward rates are quoted (one month up to one year), this is not
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necessarily the case for shorter or longer maturities. With respect to short-term contracts, 

Chaboud and Wright (2005) examine a set of high-frequency data on five currencies vis- 

a-vis the US dollar, and find that the slope coefficient of future spot rates regressed on 

forward rates is close to its theoretical value of unity for short windows of up to one day. 

In addition, Bemoth, Hagen and Vries (2007) use data from the futures market to show 

that the correlation between the forward premium and realized exchange rate returns 

starts positive and relatively close to one for the shortest maturities, and slowly turns 

negative as maturity approaches the monthly level. At the other end of the spectrum, 

Chinn and Meredith (2004) focus on multi-year forward rates of six currencies with 

respect to the US dollar. They report that, despite the failure of interest parity in the short 

run, the slope coefficient is significantly positive and closer to unity than to zero over 

longer horizons, possibly as a result of exchange rates being driven by fundamentals 

rather than short-term speculation (see also Alexius (2001) and Chinn (2006)).

In order to examine the predictive power of the forward rate, some of the earlier 

studies estimated a simple model where the log of the future spot rate is regressed on the 

log of the forward rate through Ordinary Least Squares (OLS) minimization. Subsequent 

research, though, on the time-series properties of the above variables has demonstrated 

that this model is potentially misspecified. In one of the most influential papers, Baillie 

and Bollerslev (1994) examine a set of seven currencies and their respective thirty-day 

forward rates, and find that there is strong evidence of cointegration between spot and 

forward rates. Given, thus, that the stationarity assumption of the OLS framework is 

potentially violated in spot-forward regressions, it has been argued that statistical 

inference with respect to the resulting slopes is relatively problematic.

After the above research in unit roots, most of the surveys examining the forward 

premium anomaly have explored the typical regression model in which exchange rate 

returns are the dependent variable and the lagged forward premium/discount is the only 

explanatory variable. However, it has been noted that under the moderate assumption of 

log-normal distribution for exchange rates, forward prices and price levels, two 

correction terms must be added to the regression specification. Those terms are related to 

the variance of the spot rate and its covariance with the price level, and are commonly 

referred to as the Jensen's Inequality Terms (JIT). While this correction is dictated by
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theory, its empirical effect has been frequently questioned. For instance, Bekaert and 

Hodrick (1993) report that including the variance correction term does not result in a 

slope coefficient that is consistent with theoretical predictions, while similar conclusions 

have been reached by Cumby (1988), Hodrick (1989b), Baillie and Bollerslev (1990), 

and Backus, Gregory and Telmer (1993).

4.1.2 Scope of Study

This Chapter examines the forward premium puzzle with particular emphasis on the role 

o f option-implied information in explaining this widely documented anomaly. Given that 

previous regressions of future spot rates (returns) on forward rates (forward premium) 

have resulted in estimated slopes that are significantly different from the value of unity 

that UIP predicts, and even become negative in certain cases, the hypothesis of the 

omitted future spot variance at least partly driving the results is explored.

Assuming lognormally distributed exchange rates, Jensen’s Inequality results in a 

time-varying risk-premium in the forward markets that incorporates a term that refers to 

the future variance of exchange rate returns. The above correction has received relatively 

little attention in the existing literature, with a number of researchers arguing that its 

overall effect in accounting for deviations from UIP is not significant. The motivation for 

this study stems from the fact that previous papers have used historical measures of 

volatility to proxy for the spot rate’s variance. However, since the variable in the 

extended regression specification refers to future volatility, it could be the case that the 

observed failure of JIT in estimating a forward slope closer to its theoretical value of one 

might be due to the use of a poor proxy for future variance. The subsequent analysis 

attempts to correct this potential limitation by estimating forward-looking volatility 

proxies, namely volatilities implied by currency options prices, which have been shown 

to have significant forecasting power over future volatility in foreign exchange markets 

(see for instance Pong, Shackleton, Taylor and Xu (2004)).

Overall, the results seem to indicate that including the spot rate’s future variance 

in an extended specification provides forward slopes that are significantly closer to one 

compared to the standard univariate model. More specifically, incorporating the implied
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spot variance as an additional regressor and using the Fully M odified Least Absolute 

Deviations (FM -LAD) estim ator results in a three-fold increase in the proportion o f beta 

estim ates that fail to reject the null hypothesis o f unity.

The rem aining o f the Chapter is organized as follows: Section 4.2 gives an 

overview o f the economic relationships leading to the Uncovered Interest Parity 

condition that is em pirically tested. Section 4.3 describes the data used and the time- 

series properties o f the pound/dollar exchange rate and its m onthly forward rate. Section 

4.4 presents the three alternative methodologies used to extract the spot ra te’s expected 

variance from option prices, while Section 4.5 describes the results from the Ordinary 

Least Squares estim ation o f the forward unbiasedness hypothesis. Section 4.6 examines 

the lim itations o f estim ating the specification using OLS and discusses the FM -LAD 

technique and its results. Finally, Section 4.7 concludes.

4.2 Economics

Throughout this Chapter, St denotes the spot exchange rate at time t, while F /+r refers to 

the forward exchange rate at time t for delivery at time t+z. Corresponding logarithm ic 

values are denoted by the lower case variables st and / / +T, respectively. Both rates use 

the US dollar as the num eraire currency. Furthermore, it refers to the risk-free interest 

rate applicable for US investors, while i* denotes the foreign risk-free rate.

The Covered Interest Rate Parity condition (CEP) states that the difference 

between the forward rate and the spot rate at time t must be equal to the interest rate 

differential betw een the two countries. There is strong empirical evidence dem onstrating 

that, ignoring transaction costs, CIP generally holds (see for instance Bahm ani-Oskooee 

and Das (1985) and Clinton (1988)).

(4 -d
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The Uncovered Interest Rate Parity condition (UIP) then states that the 

expectation o f spot rate returns must be equal to the interest rate differential. Taking into 

account (4.1), UIP can be expressed as follows,

E'[sl+T- s t ] = f r - s t = i ; - i t (4.2)

where £,(•) is a (risk-neutral) expectation operator conditional on inform ation available at 

time t. This study focuses on the prediction that the expected future spot rate £ [s ,+T] must 

be equal to the current forward rate / / +T, or equivalently, that expected spot returns

E t[Ast+T\ m ust be equal to the current forward premium  f ‘+T -  st .

In order to derive UIP, one must jointly assume rational risk-neutral agents, free 

capital m obility and the absence o f taxes on capital transfers. From the same set of 

assum ptions, it is also im plied that expected real returns from trading in the forward 

m arket m ust be zero.

F l+T — S'
g ,[ -  - ^ 1  = 0 (4.3)

* t + T

where Pt+T denotes the dom estic dollar price level at time t+r. Assum ing that all three 

variables in (4.3) are lognorm ally distributed and by using a Taylor series expansion to 

second terms, equation (4.4) is derived

E \ s n , ) - f r  = - —varl (i,t r )+ c o v ,( j ttI ,p ,+r) (4.4)

where p t+T is the logarithm  o f the price level Pt+T. The above two conditional second 

mom ent term s are usually referred to as Jensen's Inequality Terms (JIT). A more detailed 

discussion on the derivation o f (4.4) under a Stochastic Discount Factor  fram ew ork is 

provided in A ppendix A of this Chapter, while sim ilar derivations are also given in A zar 

(2008), Engel (1999), and Soderlind and Svensson (1997). This extended specification
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suggests that the tim e-varying risk-prem ium  in foreign exchange markets that has been 

exam ined in previous papers, i.e. the difference between the forward rate and the 

subsequent realization o f the spot rate, depends on the variance o f the spot rate as well as 

on the covariance between the spot rate and the domestic price level. In contrast to equity 

markets where a risk-free asset (cash) is exchanged with risky assets (stocks), though, 

currency markets are based on investors ‘swapping’ risky assets. Therefore, it is not 

straightforw ard to determ ine whether the domestic or the foreign investor will receive 

this foreign exchange risk-prem ium  at a given point in time as this will depend on 

m acroeconom ic fundamentals. Finally, it should be noted that the above Jensen's  

Inequality Terms are shown to be directly related to the foreign exchange risk-prem ium  

not necessarily in term s o f a rigorous theoretical framework but rather as a result o f a 

m athem atical paradox, i.e. Siegel's Paradox, which is based on the convexity property o f 

exchange rates as ratios and on the concavity property o f the logarithmic function. 

Equation (4.4) can then be rewritten as

E , U *  r ] =  / / "  ~  \  V af. ( O  +  C 0V - ’ Pt+T )  ( 4 - 5 )

or, in terms o f returns,

E, ] -  s, = U r  -  s, ) - | var, > + C0V. < W . P,+, ) (4-6)

which describe the m odels that have been examined in past surveys. In this Chapter, the 

em phasis is on the effect o f future variance var,(st+T) in explaining future spot levels, not 

taking into account the covariance between spot rates and the price level. A lthough 

theory predicts that the latter variable will have some explanatory pow er in predicting 

future exchange rates, it has been argued that its m easurement is relatively problem atic, 

reducing its actual explanatory power. M ore specifically, price levels, like m any other 

econom ic variables, are reported at relatively low frequencies. The resulting smoothing 

and averaging com plicates its inclusion in the regression model, especially considering
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the fact that the dependent variable as well as the remaining explanatory variables are 

estim ated at a daily frequency.

A lso note that the main variable o f interest, namely vart(st+T), refers to the future 

period t+r and is, therefore, not observable at time t. One m ethodology that has been used 

in the related literature involves fitting an historical model to past data and inferring 

future volatility through this m odel’s parameters. However, since the JIT measures the 

variance at t+r, a forward-looking measure, such as implied variance, m ight be a more 

appropriate proxy for future variance. In order to obtain a forward-looking measure of 

vart(st+T), im plied variances are extracted from a set o f options written on foreign 

exchange using three different techniques. The m ethodology for estim ating implied 

volatility from option prices is described in detail in Section 4.4.

4.3 Data

4.3.1 Sources

This study focuses on the exchange rate of the British pound vis-a-vis the US dollar. The 

sample period runs from January 1993 to M arch 2000, for a total o f 1,833 trading days. 

Daily spot exchange rates and 30-day forward rates at a daily frequency (proxied by 

exchange-traded futures rates) were obtained from DataStream.

The original options dataset com prised of a total o f 157,733 options written on the 

pound/dollar exchange rate, with the dataset containing, among other fields, option 

prices, strike prices, time-to-m aturity, implied volatilities and trading volume. Prices of 

foreign exchange options are calculated as the m id-point o f the best bid and the best ask 

quote at the end o f the trading day, while option implied volatilities are calculated using 

the B lack and Scholes (1973) option pricing formula.

Sim ilarly to previous studies, several filters were introduced. First, all options 

with prices lying close to zero or outside the theoretical bounds were rem oved from  the 

sample. Second, options that expired within a trading week (five trading days) were 

removed. Finally, observations with less than five traded contracts were also dropped to 

avoid illiquidity concerns. The above filtering resulted in a reduced dataset, with the final 

sample com prising o f 44,645 options (22,939 calls and 21,706 puts).
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The risk-free rate o f interest is proxied by the LIBOR offered to US investors, 

whilst the ‘dividend yield’ o f the underlying asset, i.e. o f the spot exchange rate, is 

proxied by the UK LIBOR. A significant part o f the related literature suggests that this is 

a reasonable proxy o f the ‘dividend yield’ for an investor buying a currency option which 

gives her the right to buy the British pound using US dollars. The main intuition behind 

this choice is the fact that, had she instead bought the underlying, she would have been 

able to receive a return equal to the UK risk-free rate by investing in UK  government 

bonds (see also Garm an and Kohlhagen (1983), Chesney and Jeanblanc (2003), Boyrie, 

Kim and Pak (2005), and Cheng, Gallant, Ji and Lee (2005)). However, it has to be noted 

that, within the context o f this study, the term ‘dividend yield’ does not refer to an actual 

cash dividend paid by the underlying since this is not applicable to foreign currency. 

Instead, the foreign risk-free rate is essentially the equivalent o f the dividend yield when 

pricing options in the sense that the investor holding an option contract rather than the 

underlying foregoes this risk-free payment. The US and U K  LIBOR rates were obtained 

through DataStream.

4.3.2 Time-Series Properties

Figures 4.1 and 4.2 present the time-evolution o f the pound/dollar spot exchange rate and 

forward rate, respectively, for the period January 1993 to M arch 2000. The spot rate 

ranged from a m inim um  of 1.42 to a maximum of 1.71, with the British Pound 

experiencing a relative appreciation with respect to the US Dollar during the overall 

sample period. A lthough the time-series of the monthly forward rate follows a sim ilar 

pattern to sh it is also characterized by a num ber o f extrem e observations, especially 

during the 8-month period from  July 1997 to M arch 1998. These outliers tend to be 

associated with a significantly positive forward premium  ( / / +r -  st ) ,  which system atically 

fails to m aterialize as a higher future spot rate. Consequently, despite the fact that the 

m in im u m //+r is very close to the m inim um  s t, the range o f the forward ra te’s level is 

significantly larger, with a m axim um  of 2.05.
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Figure 4.1
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One consideration when examining the relationship between spot and forward 

rates is their respective orders o f integration. A large part o f the previous literature has 

focused on this property, with results not always in the same direction. This Section 

discusses the stationarity hypothesis o f the main dependant and explanatory variables, 

nam ely the logarithm ic spot exchange rate and forward rate, as well as o f their first 

differences.

M any studies have examined the time-series properties of foreign currency 

exchange rates, finding s, to follow a unit-root process, making foreign exchange returns
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(sl+T- s t ) an 1(0) process as the first difference of a unit-root. However, results on the 

order o f integration o f the forward rate / / +r and o f the forward premium  ( / / +r - s t ) have 

been less than conclusive. Mark, Yu and Hai (1993) support the stationarity o f the 

forward prem ium  in their em pirical investigation o f three main exchange rates, namely 

the pound/dollar, French franc/dollar and yen/dollar rates. On the other hand, Crowder 

(1994) contradicts these results. Exam ining monthly observations for the pound, mark 

and Canadian dollar relative to the US dollar from January 1974 to Decem ber 1991, he 

finds that the null hypothesis o f non-stationarity o f ( / / +r -  s ,) cannot be rejected.

Figure 4.3

Correlogram  o f Exchange Rate
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W ithin the sample period, monthly forward and spot rates exhibit very high, 

positive, slow-decaying autocorrelations in the first 100 lags. M oreover, the correlogram  

in Figure 4.3 indicates that autocorrelations for f ‘+T are at a slightly lower level than 

those o f the spot rate. By subtracting sh exchange rate returns have significantly lower 

serial correlations after the first lags. However, autocorrelations in the forward 

p re m iu m (//+r - s t ) are significantly higher than those o f(s,+r —st ) , suggesting that the 

forward prem ium ’s deviation from stationarity is more pronounced.
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Figure 4.4
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In addition to the correlograms, the order o f integration o f the variables o f interest 

is exam ined by perform ing the Augm ented Dickey-Fuller (ADF) test, the Kwiatkowski, 

Phillips, Schmidt, and Shin (KPSS) test, and the Geweke and Porter-Hudak (GPH) test, 

with the results presented in Table 4.1. The ADF tests the null that the series examined is 

a unit root 1(1) and the num ber o f lags is selected by the Schwartz Information Criterion. 

As can be seen from Panel A, the results support the presence o f a unit root in the 

logarithm ic spot exchange rate (t-stat = -2.76), but the null o f a unit root in the forward 

rate process is rejected (t-stat = -3.19). Also, the hypothesis of the variables’ first 

differences, i.e. st+T - s t and / / +T — st , being unit roots is clearly rejected at the 5% level.

Panel B suggests that the results o f the KPSS test are consistent with those o f ADF. M ore 

specifically, the KPSS tests the null that the series examined is stationary, with the 

num ber o f lags being selected by Newey-W est bandwidth using Bartlett kernel spectral 

levels. Spot rate returns st+r - s t are found to be stationary at the 5% level (t-stat = 0.06), 

which is to be expected given that they are the first difference o f the unit root process st , 

while the null o f stationarity is rejected for forward premium  f t,+T -  st (t-stat = 0.77). 

Finally, the GPH test estim ates that the order o f integration o f the spot rate is very close 

to unity (,d = 1.04) but that the respective coefficient o f the forward rate is significantly 

further from  one (d  = 0.89). The GPH results are also consistent with ADF and KPSS 

with respect to the series’ first differences since spot rate returns st+T -  st are shown to be
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stationary (d  = 0.00) but the forward premium  f ' +T- s t m ight be characterized by a 

fractionally integrated process I(t/), with d  equal to 0.13.

Table 4.1 

Stationarity Tests

st / r s ,+v - s ,
r t + T

ft
Panel A: ADF test

t-stat -2.76* -3.19 -7.93 -19.53

p-value 0.06 0.02 0.00 0.00

R-square 0.01 0.13 0.03 0.31

Panel B: KPSS test

t-stat 3.57 3.62 0.06* 0.77

Bandwidth 33 33 31 10

Panel C: GPH test

d 1.04 0.89 0.00 0.13
This Table tabulates the results of tests for the order of integration of the main (logarithmic) variables, namely the spot 

exchange rate, the forward rate, the spot rate returns and the forward premium. Panel A describes the results of the 

Augmented Dickey-Fuller (ADF) test, where the null is that the series examined is a unit root. Panel B describes the 

results of the Kwiatkowski, Phillips, Schmidt, and Shin (KPSS) test, where the null is that the series examined is 

stationary. Panel C reports the variables’ order of integration (d) based on the Geweke and Porter-Hudak (GPH) test. 

The number of lags in the ADF test is obtained by the Schwartz Information Criterion. The number of lags in the KPSS 

test is selected automatically by Newey-West bandwidth using Bartlett kernel spectral levels. The 5% critical values are 

-2.86 and 0.46 for the ADF and KPSS tests, respectively. * denotes statistical significance at the 5% level.

Before proceeding with exam ining the forward unbiasedness hypothesis, attention 

should be drawn to the issue o f potential data contam ination in the time-series o f spot and 

forward rates. This concern has been extensively discussed by M aynard and Phillips 

(2001), who report that forward prem ia series that are obtained from five alternative 

sources exhibit significant differences, tending to ‘... obfuscate the true time series 

properties o f the forw ard premium, creating a clear (finite sample) bias in favour o f 

stationarity’. Furtherm ore, M aynard and Phillips (2001) observe that the forward 

prem ium  in their sample is characterized by large one-day fluctuations that are not 

present in the interest rate differential. This pattern is also found in the data used in this 

study as evidenced by the time-series o f the nominal interest differential between the US
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and the UK, and o f the forward premium, plotted in Figures 4.5 and 4.6, respectively. 

This im plies a significant deviation from CIP, which predicts that the forward premium 

should be identical to the nominal interest rate differential.

Figure 4.5 
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4.4 Estimating Option-Implied Variances

This Section describes the m ethodology used to estim ate forward-looking measures of 

the spot ra te’s expected variance using option-implied information. Three different 

approaches are used to extract option-implied variances, nam ely the Black and Scholes 

(1973) option pricing fram ework, the Corrado and Su (1996) correction for non

normality, and the Britten-Jones and Neuberger (2000) m odel-free methodology.

4.4.1 Black-Scholes ATM Implied Variance

A ssum ing lognorm ally distributed asset returns, a constant risk-free rate and constant 

dividend yield, the B lack and Scholes (1973) form ula describes the price Qbs of a 

European-style option as a function o f the underlying asset’s current price Ao, the 

option’s exercise price K, the volatility a  o f asset returns until the option’s maturity, the 

risk-free rate r, the underlying’s constant dividend yield q, and the time until the option’s 

expiration T.

W ithin the Black and Scholes (B&S) framework, the price o f a call CBs and a put 

Pbs written on A  are described by equations (4.8) and (4.9), respectively

(4.7)

CBS= A 0 e-qTN ( d ]) - K e - rTN ( d 2) 

PBS = K e ^ m - d J - A ^ m - d , )

(4.8)

(4.9)

where N(  •) is the standard normal cum ulative distribution function, and d] and d2 are 

given by
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d, =
ln(— ) + ( r - q  + — )T

K

d 2 = d} -  <7yf¥

The B&S form ula has been widely used in the literature to infer the implied 

volatility & o f the underlying asset until the option’s expiration. M ore specifically, given 

that the rem aining five param eters A 0, K, r, q, T  are readily observable and that market 

prices o f options are available, the implied volatility of an option Q can be easily 

estim ated by substituting theoretical prices QBs in the B&S formulas with quoted market 

prices Qm o f options, and then solving for a. The resulting estim ate & then constitutes a 

forward-looking m easure o f the underlying’s return volatility until the option’s maturity 

T.

As has already been mentioned, the options dataset includes implied volatility 

curves o f the spot rate across option strikes. First, option moneyness is expressed in terms 

o f option delta, rather than o f exercise price. M ore specifically, the delta At o f option i is a 

m easure o f the option’s local sensitivity to m ovements in the level o f the underlying and 

is given as the first derivative o f the option’s price Qi with respect to the underlying price 

A.

The analytical solution for the option delta under the B&S assumptions is

described in equations (4.11) and (4.12), with A c  and Ap denoting the B&S deltas o f calls

and puts, respectively.

A c = e -qTN (d t)  (4.11)

A ̂ - ^ J V H , )  (4.12)

The first m easure o f implied volatility in this study is the Black and Scholes at- 

the-m oney (ATM ) volatility. For each sample day, the first out-of-the-m oney (OTM ) call
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and the first OTM  put for the nearest expiration date T  are identified. Then, using a linear 

interpolation across moneyness, the implied volatility <j tatm o f a hypothetical ATM  option 

is estim ated through the following equation:

)& OTM ,c + ( (4.13)

where is the delta o f the first OTM  call and A Tp, is equal to the delta o f the first OTM 

put plus one (i.e. the delta of the corresponding in-the-m oney call). The variables 

&otm,p refer to the im plied volatility of the first OTM  call and o f the first 

OTM  put, respectively. The above m ethodology is then repeated using options expiring 

in the second-nearest m aturity T  , to extract <j tatm .

The ATM  volatility <j tastm o f a standardized 30-day synthetic option is obtained 

by linearly interpolating between the ATM  volatilities of the nearest and second-nearest 

expirations T  and T  , respectively, using (4.15)

where Ts is the tim e-to-expiration that corresponds to 30 calendar days (or equivalently 

22 trading days). For notational convenience, throughout the remaining o f the analysis 

the 30-day standardized B&S implied volatility and variance will be denoted by gbs and 

varss, respectively.

(4.14)

(4.15)
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4.4.2 Corrado and Su Implied Variance

Although the Black and Scholes m ethodology has been widely applied throughout the 

related literature, it relies on certain assumptions, the most restrictive o f which is 

arguably the lognorm ality o f asset returns. The Corrado and Su (1996) fram ework relaxes 

the lognorm ality restriction by modifying the original B&S formula to account for non

zero skewness and excess kurtosis in the underlying’s distribution using a Gram -Charlier 

series expansion o f the standard normal density function. M ore specifically, they define a 

density function g(z) which accounts for non-normal skewness and kurtosis, described by 

the following equation, where n(z) represents the standard normal density function and 

is the standardized coefficient of the nth moment of the asset’s returns distribution.

g (z )  = n (z)l  1 + ^ - U 3 - 3 z )  + ̂ i - ^ ( z 4 - 6 z 2 +3)] (4.16)
3! 4!

W ithin this fram ework, a call option’s price is expressed as the sum of the 

theoretical B&S price and two correction terms related to non-normal skewness and 

excess kurtosis. Then, the Corrado and Su (C&S) call option price Ccs is given by:

Ccs = Cbs + M3M 3 + (H4-3)M4 (4.17)

with M 3 = — \<JylT[{2<JylT —d x)n(dx) + <72T N {dx)]

1 -  Mt = 3- AcC-jTKdf -1 -  W fW , -  O-Vr ))«(</,) + <r3r 2W(d,)]

where Cbs is the theoretical Black and Scholes call option price and M j and M 4 represent 

the marginal effects of non-normal skewness and kurtosis on the call’s price, 

respectively. M oreover, theoretical C&S prices Pcs of Put options are obtained by first 

estim ating the price o f the equivalent, same-strike call and then using the put-call parity:
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Pc s = C cs + Ke~'T - A v (4.18)

C&S im plied volatilities <JTCS and <t£5 , corresponding to the nearest and second- 

nearest expirations, respectively, are calculated by minim izing the following sums o f 

squared errors between market prices QM and theoretical C&S prices QCs with respect to 

the m om ents vector (a, fi3, fd4)

where M  and M '  are the num ber o f observations for the maturities T  and T \  respectively. 

Standardized 30-day im plied volatility Gcs and implied variance varcs are obtained by 

linearly interpolating across the nearest and second-nearest maturities. Finally, it should 

be noted that, in addition to assuming a more flexible distribution o f asset returns, the 

Corrado and Su option pricing formula has the advantage o f sim ultaneously estim ating 

the next two higher im plied moments, namely skewness and kurtosis, for which m onthly 

estim ates can be obtained through the same linear interpolation.

4.4.3 Model-Free Implied Variance

In recent years, the literature related to estimating implied variances has som ewhat 

shifted focus from  model-based estimation to model-free estimates. For instance, when 

calculating B&S and C&S im plied volatilities, one jointly  assumes the inform ational 

efficiency o f the options m arket as well as the validity of the underlying model. Britten- 

Jones and N euberger (2000) dem onstrate that the future variance of asset returns can be 

calculated without the restriction of assuming a specific model for the returns 

distribution. In their influential paper, they dem onstrate that volatility im plied by options 

prices can be estim ated as the expected sum of squared returns under the risk-neutral

M
min

T T T

min

92



www.manaraa.com

measure. M ore specifically, Britten-Jones and Neuberger show that the risk-neutral 

expected sum of squared returns in the time interval [0, 7] is com pletely specified by a 

set o f OTM  options expiring at T.

E ^ V r  1 = £ ? [  Jf ( ^ ) 21 = 2e,T[ f ' M  + £  c ( £ T ) dK]  (4 ]9)

where is the integrated squared volatility of the asset, A, is the asset’s spot price at 

time t, and F o j  is the forward price at time 0 for delivery at time T. M oreover, p(K,T)  and 

c(K,T) are the prices o f OTM  put and call options, respectively, with strike K  and 

expiring at T.

In order to derive equation (4.19), only the stochastic process of the underlying is 

assum ed to be continuous. The Britten-Jones and Neuberger m ethod requires a 

continuum  of strike prices K, with option prices quoted at every strike. In reality, 

however, em pirical estim ation o f squared expected returns can only be done using a finite 

set o f discrete strikes. Carr and W u (2004) and Jiang and Tian (2005) relax the 

assum ption o f continuity and provide discrete versions o f the Britten-Jones and 

Neuberger model. This study follows the m ethodology adopted, among others, by Taylor, 

Yadav and Zhang (2006) o f using a finite set o f OTM options written on an asset to 

estim ate the asset’s integrated variance until the options’ expiration. The discrete version 

o f (4.19) is then given as follow s:3

varMF = \ e ' TY ^ r Q ( E , J ) - ~ (4.20)
1 ,=1 Kj  1 4 ^ 0

where varMF is the m odel-free expectation of the future variance, M  is the num ber of 

strike prices used, and Q i  is the option’s m arket price at strike AT,. Since K q  denotes the 

strike price used to select either call or put options in the formula, the option price Qi

3 Taylor, Yadav and Zhang (2006) use the methodology adopted by the CBOE to calculate the model-free 
volatility expectation of the S&P 500 index over a standardized period of thirty days.
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refers to calls when Ki > Ko, and to puts otherwise. Finally, AKi is estimated as 

2

1 F
As can be easily seen from the above equation, the value of 1]2 depends

T  K 0

on the strike Ko that is chosen to select call or put prices in the summation term. 

However, this m ethodology uses a small num ber of actual option prices to infer a risk- 

neutral density and, therefore, to create a significantly large num ber o f artificial option- 

strike com binations. This allows for K0 to be set equal to F0,t, so that the final term in 

equation (4.20) disappears. Consequently, in estim ating varMF only OTM  calls and puts 

are used, with Ko denoting the ATM  strike price.

Although the discrete version of m odel-free im plied variance in (4.20) can be 

em pirically estim ated, it is the case that a significantly large set o f options is needed to 

obtain an accurate m easure o f the underlying’s future variance. Since options are actually 

quoted at a relatively limited num ber o f strikes, a fact that is especially pronounced for 

options on individual stocks, the methodology described by M alz (1997) is em ployed to 

construct im plied volatility curves using a small set of market-traded options.

W ithin this framework, the implied volatility curve is fitted as a function of option 

deltas, as opposed to a function of option strikes. M alz (1997) argues that this 

m ethodology ensures that volatilities o f options that are further from the money (OTM 

and ITM contracts) are grouped more closely together than those of near-the-money 

options. Taylor, Yadav and Zhang (2006) also mention that ‘... extrapolating a function 

of delta provides sensible limits for the m agnitude of implied volatility curves’. 

Following this line o f thought, a quadratic function o f im plied volatility is fitted with 

respect to option delta. In addition to capturing the ‘volatility sm ile’, the quadratic 

specification has the advantage o f requiring a m inim um  of only three options to be 

estimated.

IVt = a + P A f  + jAf  (4.21)

Equation (4.21) describes the quadratic function used to construct the implied 

volatility curve, where IVi is the implied volatility of option i, and At is the option’s delta.

94



www.manaraa.com

M oreover, TV, is the simple Black and Scholes implied volatility o f option i, while zl, is 

the sensitivity o f call option i to changes in the value of the underlying, measured in 

(4.11) and (4.12) as the first derivative of the Black and Scholes form ula with respect to 

changes in the underlying’s price A 0. It should be noted that, when calculating the model- 

free im plied variance, option deltas are expressed as a function o f o-*, which is a constant 

m easure o f volatility used across all options (see also Bliss and Panigirtzoglou (2002) and 

Taylor, Yadav and Zhang (2006) for the use of cr*), with the respective dj estimated as:

< W )  =

, A x  <*t 2ln(—2-) + -------
K t 2

a y / f

Call deltas range from zero for deep OTM  contracts with high strikes to e rT for 

deep ITM ones with low strikes. The respective put deltas range from - e rT (deep ITM 

puts with high strikes) to zero (deep OTM  puts with low strikes).

The param eter vector 0  = [a, /?, y] of the quadratic function is estim ated by 

m inim izing the weighted sum of squared differences between observed volatilities IV  and

fitted volatilities IV ( A ;,<$>) with respect to 0 ,  as given in (4.22):

M
r m n X v v ^ - Z V / A , , * ] 2 (422)

j =I

where M  is the num ber of observed strikes and w; is the weight o f option /  s delta. The 

weight Wj o f option j  is equal to Aj(l- Aj) and the m inim ization is subject to the constraint

o f fitted volatilities being strictly positive, TV (A .,<!>) > 0. The above weighting scheme

ensures that deviations o f fitted volatilities from observed levels are m ore heavily 

penalized for the nearest-the-m oney options, i.e. calls with deltas close to 0.50, com pared 

to further-from -the-m oney contracts. Placing more weight in near-the-m oney options is 

com patible with the stylized fact that these options are more heavily traded, thus reducing 

the effect o f possible outliers o f illiquid ITM and OTM  contracts.
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Figure 4.7 

Spot Rate’s Implied Volatility
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After fitting the implied volatility curve, a large set of artificial option prices is 

created using the vector 0 .  M ore specifically, 1,000 equally spaced deltas ranging from 0 

to e rT are used to extract the corresponding strikes. Then, option prices (both calls and
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puts) are estim ated using the Black and Scholes formula with the respective combinations

of strike price and volatility. Finally, the OTM contracts are identified and used in

estim ating the asset’s integrated variance in equation (4.20), while standardized 30-day 

estim ates are calculated by linearly interpolating between the nearest and second-nearest 

variances.4

4.5 OLS Estimation

4.5.1 Estimating the Standard Specification

Previous studies of the forward unbiasedness hypothesis have mainly focused on two 

types o f specifications, based on exchange rate levels and exchange rate returns.5 The 

first type is specified by a regression of future spot rate levels on current forward rates, 

described in (4.23), while the second specification involves regressing exchange rate 

returns on the forward prem ium  and it is given in equation (4.24).

+ (4 -23)

J , + r  ”  S t =  a  +  M +T - S ' )  +  € , ( 4 ‘ 2 4 )

Sim ilarly to the earlier stream of the literature on the forward premium  puzzle, 

this study tests the standard specification where the forward rate is the only explanatory 

variable o f the future spot rate. Before examining the effect o f expected variance, the 

standard specification in (4.23) is estimated for the period 1993-2000 through OLS 

regressions, with Panel A of Table 4.2 presenting the results. Consistent with previous 

findings, the estim ated slope for the entire sample is found to be less than the value o f 

one that is predicted by UIP. However, at a level o f 0.7690, the forward rate’s beta is 

positive and statistically significant. Furthermore, the intercept is significantly positive (t-

4 From the artificial set of option prices, the methodology uses OTM puts with strikes in the range [0, F oj) 
and OTM  calls with strikes in the range [ F o,t . ° ° )
5 A third type refers to Error-Correction M odels (ECM) which include lagged differences between the spot 
and the forward rates as additional explanatory variables o f exchange rate returns.
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stat -  18.77), indicating that changes in the forward rate fail to fully explain changes in 

future spot rates.

In addition to regressing equation (4.23) for the entire sample period, rolling 2- 

year estim ations are perform ed in order to examine the evolution o f observed betas across 

time. This step is m otivated by the findings o f Baillie and Bollerslev (2000), among other 

studies, which report a significant time-variation of the slope coefficient in forward 

premium  regressions, indicating that the rejection of the forward unbiasedness hypothesis 

is probably dependant on the period examined rather than a universal characteristic of 

foreign exchange markets.

Table 4.2 
OLS Results

Panel A: Standard Specification

^ = a + A r T+ * (

a P
Number o f obs non-rejecting 

H0: P = 1

0.3666 0.7690 68

(18.77) (-18.77)
(4.30%)

Panel B: Extended JIT Specification

*,+r = c t + M r +  y v  arf ( j ,+7) +  £,

a p y
Number o f obs non-rejecting 

H0: P = 1

varBS

t-stat (= 0)

0.3935

(19.65)

0.7566

(-19.57)

-1.3879

(-5.36)
68

(4.30%)
t-stat (= -0.5) (-3.43)

varcs 0.3676 0.7687 -0.0564

t-stat (= 0) 

t-stat (= -0.5)

(18.78) (-18.78) (-0.82)

(6.45)

68
(4.30%)

varMF 

t-stat (= 0)

0.3634

(18.37)

0.7717

(-18.11)

-0.1255

(-1.01)
66

(4.17%)
t-stat (= -0.5) (3.01)
This Table tabulates the results of OLS regressions of the forward rate unbiasedness hypothesis. Panel A refers to the 

standard specification while Panel B refers to the extended JIT specification.
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As can be seem from Figure 4.8, rolling estimates of the slope coefficient indeed 

exhibit significant variability throughout the period examined. Starting from a level of 

around 0.60, beta follows an upward trend until roughly the m iddle o f the sample period, 

when it experiences a sharp decline. The slope then slowly returns to 0.60 by 2000. 

D espite the significant volatility of the estimated slope, which ranges from a minimum of 

-0.06 to a m axim um  of 1.29, with the exception of a brief period in 1999 beta remains 

positive for the m ost part of the sample period. However, only 68 (4.30%) of the 

coefficients are statistically indistinguishable from the theoretical value o f unity at the 5% 

confidence level, highlighting a significant deviation from the predictions o f the UIP.

Figure 4.8

Rolling OLS Estimations under the Standard Specification 

Evolution of Forward Slope

P

-0.2 J

4.5.2 Accounting for the Future Variance of the Spot Rate

As has been discussed in Section 4.2, the specification in (4.23) fails to incorporate the 

JIT correction term for the expected variance o f the future spot rate, considering the risk- 

prem ium  to be equal only to the difference between / / +r and st+r. A lthough previous 

studies have shown that the contribution o f the JIT  term in explaining violations o f UIP is 

not significant, it is the case that estim ating var,(s,+r) ,  conditional on inform ation
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available at time t, is not straightforward. Therefore, its docum ented inability to account 

for deviations o f the forward ra te’s slope from its theoretical value o f unity might be 

attributed, at least partly, to m easurem ent error rather than to a fundamental quality.

This Section attempts to address the above concern by using option-implied 

variances as an alternative proxy for the exchange rate’s future variance and to re

exam ine the forward unbiasedness hypothesis by testing the extended version in equation

(4.25). Three different measures o f option-implied variance are used, nam ely varBS, varCs 

and varMF, corresponding to the three methodologies described in Section 4.4.

s'+r = <x + f i f r  + r v  ar, (* ,„ ) + £, (4.25)

W hen estim ating the OLS regressions, the three param eter vector [a, ft, y] is 

sim ultaneously estim ated, instead o f restricting y to its theoretical value of -0.5, in order 

to allow for a m ore flexible framework. As can be seen from Panel B o f Table 4.2, all 

three proxies for the future variance of the spot rate fail to im prove the predictive power 

o f the forward rate within the OLS framework. M ore specifically, when the extended 

specification in (4.25) is estim ated for the entire sample period, the resulting forward 

betas are in fact slightly low er than the one estimated in (4.23) which, combined with the 

sim ilar m agnitude o f standard errors, suggests an even further deviation from UIP. 

M oreover, although the estim ates of the variance’s slope are negative across all three 

proxies, y is significant only for varBs• Finally, with respect to the rolling 2-year 

estim ations, introducing vart(st+T) into the equation does not result in a higher proportion 

o f individual estim ates not rejecting the unbiasedness hypothesis as might have been 

expected. The first two proxies varBs and varcs produce the same proportion o f betas 

lying within two standard errors of unity as that of the standard specification (4.30%), 

while the third proxy varMF surprisingly results into a lower proportion o f betas that are 

indistinguishable from one (4.17%).
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Figure 4.9
Rolling OLS Estimations under the Extended Specification
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Overall, results from testing the forward unbiasedness hypothesis of the 

pound/dollar exchange rate using Ordinary Least Squares are in line with more recent 

em pirical findings in the literature. Although forward betas are generally lower than their 

theoretical value of one, deviations from the UIP are less severe compared to earlier 

studies, as dem onstrated by the fact that negative betas are obtained only for a small part 

o f the period examined. In addition, incorporating the JIT term of the future spot rate’s 

variance into the specification does not appear to have an impact on the predictive power 

o f the forward rate over future spot rates.

4.6 FM-LAD Estimation

4.6.1 Complications from Using OLS Regressions

As has been mentioned in the previous Section, studies o f the forward premium  puzzle 

have mainly exam ined two types o f specifications, involving exchange rate levels or 

exchange rate returns. It has been argued that neither type is free of certain limitations 

regarding the stationarity o f the variables o f interest, an issue that m ight be even more 

significant under the assum ptions adopted when using the Ordinary Least Squares 

estim ator to test the validity of UIP.

The first type is given by equation (4.23). A common concern with respect to this 

model refers to the order o f cointegration between the dependant and the explanatory 

variables. M ore specifically, as has been discussed in Section 4.3, spot levels o f the 

pound/dollar exchange rate were found to follow a unit root process while forward rates 

appear to be described by a fractionally integrated 1(d) process, with d close to one.

Although fractional cointegration between spot and forward rates still produces 

consistent estim ates of the forw ard’s slope /?, it is likely to com plicate the statistical 

inference o f its significance. For instance, M aynard and Phillips (2001) argue that the 

relatively close fit that the specification in (4.23) often produces may be due to the fact 

that it is ‘... simply reproducing the CIP relation, albeit with the interest differential 

hidden in the residual’. In addition, the finding that regressing future spot rates on current 

spot levels (see equation (4.26)) produces an even tighter fit compared to using forward 

rates is particularly puzzling.
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(4.26)

The second specification in (4.24) uses the forward prem ium /discount as the sole 

explanatory variable o f exchange rate returns. However, similarly to the previous model, 

the orders of integration o f (s(+r- s f) a n d ( / ('+r- j ; )a re  not consistent, with spot returns 

found to be stationary and the forward premium rejecting the null o f stationarity. 

Com plications, therefore, arise when a short-memory variable is attempted to be 

explained by a long-m em ory regressor with a stochastic trend. M aynard and Phillips 

(2001) in particular argue that, unless the slope coefficient /? is zero, the stochastic trend 

would be transferred to the spot return as well.

4.6.2 The FM-LAD Estimator

Given the above lim itations regarding the OLS assumptions, the forward unbiasedness 

hypothesis is tested using the Fully M odified Least Absolute Deviations (FM -LAD) 

estim ator derived in Phillips (1995), as an extension to the Least Absolute Deviations 

(LAD) technique. In addition to accommodating non-stationary data, endogeneity6 and 

serially correlated errors, the FM -LAD m ethodology is also considered to be robust to 

outliers in the regressors and in the errors, which are docum ented characteristics of 

foreign exchange m arket m odels.7 Finally, as has been argued by Phillips, M cFarland and 

M cM ahon (1996), this technique allows for the use o f exchange rate levels in (4.23) 

rather than their first differences in (4.24).

The FM -LAD estim ator is a semi-parametric technique that treats the regression 

param eters a  and /? in (4.23) param etrically while treating nuisance param eters in a non-

6 Endogeneity in forward unbiasedness regressions typically refers to interest rates and exchange market 
shocks being correlated. This monetary policy endogeneity has been shown to be more pronounced for 
short horizons, with the endogeneity bias of the forward unbiasedness regressor declining in longer 
horizons where macroeconomic fundamentals become more important (see M eredith and M a (2002) for a 
more detailed analysis o f the role of endogeneity in the forward premium puzzle). This phenomenon has 
been frequently referred to as ‘leaning against the w ind’, where a central bank buying currency is 
associated with that currency depreciating.
7 The FM -LAD estim ator has been used in studies examining foreign exchange markets by Felm ingham 
and Leong (2005) and Phillips, McFarland and McM ahon (1996).
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param etric way. The following discussion on the FM -LAD properties draws from the 

com prehensive analysis in Phillips, M cFarland and M cM ahon (1996). First, consider the 

cointegrated system

y, = f i 'x t +u0t 

Ax. =

(4.27a)

(4.27b)

where ut = (w0, w',) is a stationary vector with length m  = (1 + mx) and spectral density 

matrix f uu (A ). The long-run covariance matrix of ut is given by:

f t -  = 2 * / „ ( 0 )  = (4.28)

where the partition is conform able with that of u, and Q** > 0, so that the num ber of unit 

roots in the stochastic process x t is equal to the dimension o f x t (i.e. x t is a full rank 1(1) 

process). Also define the long-run covariance matrix o f w' = ( v ^ u ^ )  as

H  = 2 j c f  (0) =ww J '

(o .  a  \uu ux

^ x u  ^xx;
(4.29)

partitioned conform ably with w(. Note that vt (but not necessarily ux,) is bounded and has 

finite m om ents o f all orders. The LAD estim ator of /? in (4.27a) is then given by:

Pud  = a r g m in |n _' ^ | x -x ,fS\
P [ 1

(4.30)

where n denotes the sample size. The 0 lad estim ator has an asym ptotic normal 

distribution and is Vn consistent for p. However, when x t follows a unit root and (4.27b) 

holds, the LAD estim ator suffers from bias and non-scale nuisance param eter problem s,
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sim ilarly to OLS. In order to account for these limitations, Phillips (1995) designs the 

FM -LAD estim ator by m odifying LAD to account for endogeneity in the regressor 

variables and for serial dependence in the errors. The FM -LAD estim ator is defined by:

P I a d  = P iao (4.31)

where X'X  = ' ^ i" xtx ' , X 'A X  =  xtAx't and / ( 0 ) i s  a consistent estim ator o f the

probability density o f uot at the origin. Also, A^, is a consistent estim ator o f the one-sided 

long-run covariance matrix

k=0

where

v* (4.33)

and

V, = sign(uQt) (4.34)

The error vt and the m odified error v,+, are estimated through a first-stage LAD 

regression which produces the error estim ate uQl= y t — P ’LADxt and ut = sign(uQt) . 

Then A ^  can be estim ated and, using conventional kernel estimates o f the long-run 

covariance matrices £lvx and £2^, v* is constructed, with

<4 -35>

M oreover, A*v can be rewritten as
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(4.36)

where
A xv  ^  E ( U xOVk  )  » & x x  ~  ^  E ( U xOU xk )

so that the estim ation o f A* involves the estimation o f the four submatrices A , A , Q. ,
X V  7 XX  7 XX  7

and Q.xv. Phillips (1995) shows that when system (4.27) has finite variance errors, 

the estim ator in (4.31) is asym ptotically mixed normal, i.e.

where covvx = Q vv -  £2vxC2xl£ljev. Also note that the asymptotic mixed normal 

approxim ation in (4.37) holds even if the error variances in system (4.27) are not finite, 

m aking the FM -LA D estim ator a flexible testing technique in the case o f foreign 

exchange markets.

4.6.3 FM-LAD Results

4.6.3.1 The Standard Specification

Panel A o f Table 4.3 presents the results from the FM -LAD estim ation o f the forward 

unbiasedness hypothesis in (4.23).8 W hen future spot rates are regressed on current 

forward rates for the entire sample period, a slope coefficient o f 0.8342 is obtained. This 

value o f fi  is significantly positive and closer to one compared to the OLS estimate, albeit 

statistically different from  the value o f unity that UIP predicts. The above result is in line 

with findings from more recent studies which suggest that deviations from UIP have been 

relatively less severe in the 90’s compared to previous periods. However, the statistically 

significant intercept term  seems to indicate that forward rates fail to adequately predict 

subsequent realizations o f spot rates.

8 The FM -LAD estim ation was programmed using the R-software.

iPL d -P )  ~ N m - f m 2[covvx ® (xxy' ] ) (4.37)
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M oreover, starts highly positive at a level o f around 0.60 at the beginning of the 

period and fluctuates between 0.60 and 0.90 until late in 1997. However, ft  experiences a 

large drop during the later part o f the sample period, reaching its lowest level of 0.13 

m idway through 1998, and slowly approaching 0.50 in the early 2000. Finally, 

considering the slope’s standard error, an easy way of sum m arizing the predictive power 

o f f ' +T over sl+r across time is by examining the number o f individual rolling estimations

which produce betas that lie less than two standard errors o f their theoretical value of 

unity. Regressing the standard model in (4.23), thus, results in 55 estimated betas (4.12% 

o f the overall set o f coefficients) being statistically insignificant from one at the 5% 

confidence interval, with these estimates generally found during 1995.

Figure 4.10
Rolling FM-LAD Estimations under the Standard Specification

Evolution of Forward Slope

/  V * '

0.5 -

\\V

4.6.3.2 The Extended Specification

Considering the point estim ates for the entire sample period, the inclusion ofvar,(s,+t.)as a

correction term appears to have little contribution (if any) in obtaining a ft coefficient 

closer to unity, irrespective of the proxy used. M ore specifically, including varcs and 

varMF as additional regressors results in only a marginal increase in the forw ard’s slope 

from 0.8342 to 0.8363 and 0.8433, respectively, while the varBs term  actually produces a
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slightly lower ft (0.8315) compared to the standard specification. Furthermore, the 

coefficient y  of the expected spot variance is significant only in the case of the B&S 

estim ate (t-stat = -2.26), m arginally significant for varcs (t-stat = -1.67), and insignificant 

for varMF (t-stat = -1.20). Finally, the intercepts remain significant and at levels 

com parable to those previously reported for (4.23).

Table 4.3 
FM-LAD Estimator Results

Panel A: Standard Specification

* ,«  = «  +AT' + e,

a P
Number o f obs non-rejecting

H0: P  =  1

0.0766 0.8342 55

(5.76) (-5.76)
(4.12%)

Panel B: Extended JIT Specification

+  ^ v  a r ,f s f+r) +  £,

a P y
Number o f obs non-rejecting 

H0: P  = 1

varBS

t-stat (= 0)

0.0875

(5.97)

0.8315

(-5.85)

-0.1360

(-2.26)
160

(11.99%)
t-stat (= -0.5) (6.05)

varcs 0.0795 0.8363 -0.0503
139

(10.42%)
t-stat (= 0) 

t-stat (= -0.5)

(5.90) (-5.77) (-1.67)

(14.93)

varMF 

t-stat (= 0)

0.0767

(5.70)

0.8433

(-5.29)

-0.0462

(-1.20)
167

(12.52%)
t-stat (= -0.5) (11.79)

This Table tabulates the results of FM-LAD regressions of the forward rate unbiasedness hypothesis. Panel A refers to 

the standard specification while Panel B refers to the extended JIT specification.
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Figure 4.11
Rolling FM-LAD Estimations under the Extended Specification
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However, when rolling 2-year regressions are considered, adding the JIT term in 

the specification appears to have a significant impact on the forward ra te’s explanatory 

power of future spot rates. As can be seen from Figure 4.11, /? estimates exhibit 

variability through time, while following a similar pattern to that of the standard 

specification in Figure 4.10. M ore importantly, though, the 5% confidence bands have 

moved closer to unity in the case o f all three varf(j,/+r) proxies, resulting in more

coefficients failing to reject the unbiasedness hypothesis of p  = 1. The proportion of 

observations with forward slopes that are statistically indistinguishable from one is 

11.99%, 10.42% and 12.52% for varBs, varcs and varMF, respectively. This represents an 

increase by a factor of three com pared the standard specification in (4.23) and goes some 

way into supporting the role o f the JIT future spot variance in producing results that are 

more in line w ith the UIP predictions.

Overall, the results suggest that including an option-implied proxy for the future 

variance o f the spot rate in an extended forward unbiasedness specification and using the 

FM -LAD estim ator instead o f the standard OLS framework is associated with a 

significantly higher proportion o f betas that are in line with interest parity. It can be easily 

seen from com paring Figures 4.8, 4.10 and 4.11 that this im provem ent stems from two 

factors. First, the beta coefficients o f the extended specification in (4.25) estimated 

through FM -LA D are system atically higher and, therefore, closer to the theoretical value 

o f unity com pared to betas obtained by estim ating the standard specification in (4.23) 

through OLS. Also, the resulting standard errors are higher when the FM -LAD estim ator 

is used on (4.25) com pared to the OLS standard errors, m aking it more difficult to reject 

Uncovered Interest Parity. M ore specifically, when the observations are examined where 

parity is rejected under OLS/(4.23) but not rejected under FM -LAD/(4.25), all but three 

cases are found to be characterized by higher betas as well as by higher standard errors. 

However, these two effects do not have the same magnitude since the increase in the 

forward betas is typically higher than the respective increase in the regressions’ standard 

errors. For instance, when the extended specification (4.25) is estimated under FM -LAD, 

standard errors increase on average by a factor higher than three (353%) relative to the 

average standard error o f the standard specification (4.23) under OLS. Although the
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forward betas increase by less than that in percentages, their m agnitude is obviously 

higher, m aking their absolute effect more significant in reducing the proportion of parity 

violations.

4.7 Conclusion

This Chapter has examined the forward premium anomaly, i.e. the widely reported 

finding that when spot rates are regressed on forward rates, the resulting slope 

coefficients deviate from one and, in m any cases, fall below zero. A negative forward 

slope represents a significant violation o f Uncovered Interest Parity and implies that, not 

only does the forward rate fail to predict the future level o f exchange rates, but that it 

effectively predicts spot changes o f the wrong sign. For instance, if the forward rate is 

higher than the current spot rate, a negative beta is associated with a future spot rate that, 

instead o f appreciating to reach the forward level, it will actually tend to systematically 

depreciate and fall below its current level.

The em pirical results confirm  previous findings that using shorter samples in 

rolling regressions produces slope coefficients that are relatively dispersed, positive and, 

for some 2-year periods, statistically indistinguishable from unity. Furthermore, the FM- 

LAD estim ator results in slopes that are more consistent with UIP com pared to Ordinary 

Least Squares Estimates, since the form er technique is able to address some common 

econometric concerns related to foreign exchange markets, such as fractional 

cointegration between spot and forward rates, serially correlated errors and endogeneity.

Finally, the future variance o f spot returns appears to have some explanatory 

power over previously reported deviations from UIP. M ore specifically, adding the 

option-im plied expected variance as an additional regressor in the forward unbiasedness 

specification results in a significantly higher proportion o f slopes that are equal to their 

theoretical value o f unity, providing support for the hypothesis that Jensen’s Inequality is 

related to the m agnitude o f the risk-prem ium  observed in foreign exchange.
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Appendix A

Derivation of the Extended JIT Forward Unbiasedness Specification

A function f ( x ) is convex if the expected value of the function is higher than the 

function o f the expectation, as given in (A .l). An example o f a convex function

i s / ( * )  = —.
jc

E ( f ( x ) ) > f ( E ( x ) )  (A .l)

On the other hand, a function f ( x )  is concave if the expected value o f the 

function is lower than the function of the expectation, as given in (A.2). An example of a 

concave function is the logarithm ic function f ( x )  = ln (x ) .

E ( f ( x ) ) < f ( E ( x ) )  (A.2)

For the logarithm ic function, in particular, it can be shown that the logarithm of 

the expectation is higher than the expectation of the logarithm by half the log’s variance:

In £■(;(;) = £(hi(;t)) + i  var(ln(.x)) (A .3)

Jensen 's Inequality  in foreign exchange markets stems from the fact that

exchange rates are quoted as ratios o f currencies and, given the convexity of

f ( x )  = — and equation (A .l), the expected rate o f appreciation o f one currency can never

be equal to the expected rate of depreciation o f the other, a fact that is also referred to as 

S ieg e l’s P aradox . For instance, if  the forward rate is assumed to be a conditionally 

unbiased predictor o f the future spot rate, i.e. F /+r = £ ,[5 ,^ ] ,  Siegel's Paradox  is 

expressed as follows:
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Define FtRN',+T as the risk-neutral forward rate. The risk-neutral forward rate is 

given by:

p i R N . t + r  _  t+ t
(A.5)

Furtherm ore, assume rational expectations and that risky assets are priced with a 

stochastic discount factor (pricing kernel). Under risk-neutrality there are no expected 

real profits from  forward m arket speculation, i.e. the risk-neutral investor would arbitrage 

the m arket until the following condition is met (Engel (1984) provides a more detailed 

discussion o f (A.6) in a single consum ption good economy, and Engel (1992) shows that 

this equation still describes the risk-neutral forward rate when utility is a function o f more 

than one good):

Using the concavity property of the logarithmic function in (A.3) and assuming 

that exchange rates and prices levels are log-normally distributed, equation (A.6) can be 

rewritten as:

P,
1 = 0 (A.6)

t+ T

^ ] )  = Et [ln (F? ° ,+T- )] + ̂  var(ln( r ' p  S‘+T)) = 0 (A.7)In (£,[•
P,

and, finally, as:
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Et [S„r ] -  f 'RN',+X = ~ \ Wal‘ ) + C0V, (S,+r > A+r ) (A.8)

where the lower case variables s,+T, f tRN’l+T and p l+T correspond to the logarithmic values 

o f the upper case variables S t+T, f *Nj+t and Pt+T, respectively (see also equation (4.4) in 

the main text).

M oving from risk-neutral to real-world expectations, define f RWj+t as the real- 

world forward rate. Then, if utility is time-separable with a constant rate o f time- 

preference, the equivalent of (A.6) is given by:

f rw,i+t _ s  /3 u{ Ct+r)  ̂ A 
£ , H — r  — X ,, J t  ] = °  (A.9)

P,+r « ( C , )

where p  is the stochastic discount factor, m(  ) s the utility function and the prime (') 

indicates the first derivative. Also, A,+r refers to the intertemporal marginal rate of 

substitution:

4 „  = ^  , c T ) <A 1°)u (C,)

Sim ilarly to the above, assuming all variables are log-norm ally distributed and 

defining ccl+T as the logarithm  of A,+r, equation (A.9) can be rewritten as:

E X St+r ] -  f , RW',+T =  ~ \ ( St+T )  +  C 0 V , ( ^ r + r . A +r  > “  C 0 V r ( S,+r ’ ° 7 +r  )  ( A - 1 1 )
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Chapter 5

An Examination o f  the Efficiency o f  Emerging Options Markets: 

The Case o f  the Athens Derivatives Exchange

5.1 Introduction

5.1.1 Literature Review

Since Sharpe (1964) and Lintner (1965) introduced the Capital Asset Pricing Model 

(CAPM ), there has been a wide body of literature examining its em pirical perform ance in 

pricing various classes o f financial assets. W ithin the C A PM ’s m ean-variance 

fram ework, investors are only interested in a security’s contribution to their portfolio’s 

systematic variance. In other words, assets with returns that exhibit a higher covariance 

with m arket returns will add to the overall portfolio’s riskiness, therefore requiring higher 

expected returns com pared to their lower covariance counterparts. Despite its subsequent 

popularity, though, many studies have challenged the validity o f the CAPM , concluding 

that its single pricing factor (namely the asset’s covariance with the m arket as measured 

by its beta) m ight be insufficient in explaining expected returns.

Fam a and French (1992), m otivated by the systematic variance’s apparent lack of 

explanatory pow er over expected returns, attempt to improve the CAPM  by incorporating 

two additional factors. The three Fama and French (FF) factors include the original 

m odel’s m arket risk premium, the returns of a portfolio o f small minus large 

capitalization stocks, and those of a portfolio of value minus growth stocks. The FF 

factors are based on the empirical observation that some classes of stocks system atically 

outperform  the market, even after controlling for these assets’ betas, and, despite the lack 

o f a theoretical fram ew ork supporting the inclusion o f these factors, FF find that their 

extended model perform s much better than the traditional CAPM  in explaining the cross- 

section o f equity returns.

One explanation that has been proposed for the above empirical finding is the 

possibility that the FF factors are acting as proxies for the asset’s higher systematic
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moments. M ore specifically, whereas in the CAPM  fram ework investors form portfolios 

by exam ining only the incremental effect of adding another security in the portfolio’s 

total systematic variance, in reality they are likely to be also interested in higher 

systematic m om ents o f the asset’s distribution. Since the non-norm ality of asset returns is 

a well docum ented em pirical finding, asset pricing models that are based on the 

assum ption o f norm ally distributed returns are likely to ignore im portant risk factors that 

are being priced by the market.

Following this line o f thought, some studies have examined whether the next two 

systematic m om ents are priced in addition to systematic variance. Kraus and Litzenberger 

(1976) provide one o f the first em pirical papers on risk-factors associated with higher co

m om ents by testing an extended version of the CAPM  which includes an additional 

factor to account for the coskewness of asset returns with the market. Their results 

indicate that the new model is better in explaining the cross-section of equity returns, 

since systematic skewness appears to be priced, with the market assigning a negative 

risk-prem ium  to positive levels o f the third systematic moment. Furthermore, Fang and 

Lai (1997) introduce the fourth systematic moment into the analysis. Testing a three- 

m om ent model, they find that cokurtosis is priced in their cross-section o f equity returns 

in addition to covariance and coskewness (see also Christie-David and Chaudhry (2001) 

for a sim ilar exam ination o f the futures market).

Despite the large num ber of past studies that examine the perform ance o f pricing 

m odels in the case o f equity, there has been relatively limited interest in expected option 

returns. Since options are risky assets, standard capital asset pricing theory predicts that 

they should earn a risk-prem ium  related to the systematic risk they are exposed to. Coval 

and Shum w ay (2001) further dem onstrate that, under a set of realistic assumptions, 

option returns must be increasing in strike price space, while calls should earn a return in 

excess of that o f the underlying asset and puts should have an expected return below the 

risk-free rate. Focusing on calls and puts written on the S&P 500 index between 1990 and 

1995, they find that option returns in their sample indeed exhibit the above m entioned 

characteristics. However, returns do not appear to vary linearly with their respective 

market betas, indicating that additional factors are potentially priced.
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In contrast, Ni (2006) finds that the Coval and Shumway (2001) theoretical 

predictions do not apply for call options written on individual stocks. Examining a 

sample o f US calls for the period 1996-2005, she reports average call option returns that 

are decreasing in strike price, with OTM calls earning negative returns. This puzzling 

finding is potentially explained through investors’ seeking of idiosyncratic skewness, 

leading to higher than expected OTM  call prices and, hence, lower returns. Jones (2001) 

analyzes a set of S&P 500 index options and concludes that idiosyncratic variance alone 

is insufficient in explaining short-term OTM put returns. He argues, therefore, that a 

m ulti-factor m odel is necessary to understand the risk-prem ia associated with options. 

M oreover, Broadie, Chernov and Johannes (2009) examine a larger sample of S&P 500 

index options, nam ely from 1987 to 2005, with particular emphasis on puts. Contrary to 

Coval and Shumway, they report that the Black and Scholes (1976) option pricing model 

cannot be rejected based on deep OTM  put returns. Also, ATM  put and straddle returns 

are found to be consistent with jum p models.

Liu (2007) focuses on arguably the two most common sources of risk in the 

options market, nam ely changes in the value of the underlying and changes in the 

underlying’s volatility. By forming delta and vega neutral straddles with options written 

on the FTSE100, she explores the hypothesis that options portfolios that are immune to 

delta and vega risk should earn the risk-free rate, and finds that this prediction is 

supported for ATM  and ITM portfolios. However, OTM  straddles appear to earn 

significantly negative returns, with one potential explanation for this result being the fact 

that delta and vega neutrality, measured as Black and Scholes local sensitivities, do not 

necessarily hold for the entire holding period o f the straddles. The paper also examines 

risk-reversals, which are option positions that profit from negative skewness, and finds 

that, even after controlling for the bid-ask spread, trading these portfolios has been 

significantly profitable during the sample period from 1996 to 2000.

O ’Brien and Shackleton (2005) examine the effect o f systematic m om ents of 

order higher than two in explaining the cross-section of option returns. They focus on 

FTSE100 index options and conclude that while systematic variance is significant in 

explaining option returns, the effect o f coskewness and cokurtosis is less evident. Finally, 

one o f the papers that have significantly motivated the present study is the Santa-Clara
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and Saretto (2009) exam ination o f S&P 500 options returns. In particular, they analyze 

the perform ance o f various trading strategies and find that these strategies are associated 

with very high returns, an effect that is especially pronounced for those that involve short 

positions in options, and that these returns are not justified by their exposure to market 

risk according to traditional asset pricing models. However, after accounting for 

transaction costs and margin requirements, the above m entioned returns become less 

significant, or even negative. Consequently, even though a certain level o f mispricing is 

docum ented in the US options market, a typical investor cannot exploit real profit 

opportunities due to the high costs involved and, instead of being arbitraged away, 

options m ispricing is allowed to persist.

M ost em pirical studies that examine options and other derivatives instruments 

have traditionally focused on developed markets such as the US and the UK option 

markets. A lthough this is partly justified by the fact that such markets are characterized 

by high-volum e trading so that option prices are likely to be more informative, this 

Chapter proposes that em erging markets can provide an interesting new field of research.

The Athens Derivatives Exchange (ADEX) in particular was established in 2000 

and has experienced significant growth since, being ranked 7th among European option 

exchanges based on volum e in index derivatives in 2003.9 The relatively limited research 

interest in the Greek derivatives m arket has so far focused m ainly on futures rather than 

on options. For instance, Floros and Vougas (2006) examine the hedging effectiveness of 

Greek stock index futures, while Floros (2007) and Kenourgios (2004) explore the price 

discovery m echanism  that links index futures contracts with the underlying index. 

Skiadopoulos (2004) is the only paper to date that focuses on the Greek options market 

and, in particular, im plied volatility. Using a dataset of options on the Greek large- 

capitalization FTSE/ASE-20 index, the author constructs an im plied volatility index 

GVIX and finds that, although the spot level o f the underlying index can forecast future 

changes in im plied volatility, the reverse is not true, supporting the hypothesis that ‘... 

GVIX can be interpreted as a gauge of the investor’s sen tim en t...’ rather than a predictor 

o f future realized volatility. Furthermore, Skiadopoulos (2004) docum ents a spillover 

effect between the GVIX and the US volatility indices VXO and VXN.

9 Athens Derivatives Exchange Fact Book (2005)
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5.1.2 Scope of Study

The objective of this Chapter is to examine option returns in an em erging market with 

particular focus on the extent of mispricing present in the market. In addition, a 

com parison is provided between the degree o f efficiency exhibited by the emerging 

ADEX and that which typically characterizes developed options markets, with the main 

focus o f the com parison being the US. However, the above com parison is not a direct, 

one-to-one com parison between exchanges. M ore specifically, the efficiency of the Greek 

m arket is evaluated by perform ing CAPM  regressions on option returns and by 

exam ining the returns o f delta and/or vega neutral straddles in ADEX for the period 

2004-2007. Rather than replicating this analysis for the US m arket in the same period, 

em pirical findings from  previous studies which em ploy sim ilar efficiency tests in 

developed m arkets across much larger sample periods are used as a benchmark.

The main hypothesis of interest is that the Athens Derivatives Exchange exhibits a 

level of efficiency com parable to that o f developed markets. Given the global nature of 

today’s m arketplace and the fact that large, international investors w ith significant 

experience in m ore established options markets account for m ost o f the trading volume in 

Greece, it is not unreasonable to assume that ADEX should be a relatively efficient 

m arket, with option prices reflecting ‘true’ asset values that do not offer returns in excess 

o f those justified by their risk-exposure.

The alternative hypothesis is partly motivated by the Santa-Clara and Saretto 

(2009) study, and states that higher transaction costs, com bined with thinner trading, are 

likely to be associated with a higher level of options mispricing, measured by returns of 

options and options strategies in excess o f their exposure to risk. Intuitively, higher 

trading costs will result in a widened no-arbitrage band, and m arket prices o f options will 

be allowed to deviate further from their theoretical price without arbitrageurs being able 

to profit from  the discrepancy and, in the process, forcing prices to their ‘true’ level.

Given the higher transaction costs that characterize the Athens Derivatives 

Exchange, the above m entioned alternative hypothesis predicts that positions in 

individual options in Greece earn higher risk-adjusted returns than those typically earned
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by options in the US or the UK developed markets. In addition, trading strategies that are 

risk-neutral would be more likely to earn returns that are statistically different from the 

risk-free rate in an em erging m arket com pared to its developed counterparts.

Overall, the results appear to support the efficiency o f the Athens Derivatives 

Exchange. A lthough naked option positions in Greece earn substantially higher returns 

than their US counterparts, the discrepancy between realized returns and those justified 

by standard asset pricing theory or the Black and Scholes option pricing model (1973) is 

not necessarily larger than that traditionally documented in the US market. More 

im portantly, portfolios that are formed to be delta and/or vega neutral are found to earn 

the risk-free rate, providing further support for the efficiency o f the Greek options 

market. In summary, the developing m arket of the Athens Derivatives Exchange does not 

appear to offer real profit opportunities, after controlling for risk, and the extent to which 

options m ight be considered as mispriced is not found to be higher than that 

characterizing the US and the UK markets.

The rem aining o f the Chapter is organized as follows. Section 5.2 gives an 

overview of the Greek large-capitalization index and its returns throughout the sample 

period, while Section 5.3 presents the data used in the em pirical analysis. Section 5.4 

describes the estim ation of the im plied moments vector for the index using options data, 

and Section 5.5 discusses observed returns of naked positions in individual, European- 

style calls and puts written on the FTSE/ASE-20. Section 5.6 analyzing risk-adjusted 

returns. Section 5.7 includes the analysis o f returns to various trading strategies, such as 

delta and vega neutral straddles. Finally, Section 5.8 provides a com parison between the 

results and previous em pirical findings from developed markets, and Section 5.9 

concludes.

5.2 Index Returns

The sam ple period could be characterized as one o f a significantly high increase in the 

level o f the underlying large-capitalization FTSE/ASE-20 index. From  a level of 1,194.2 

on the first trading day o f 2004, the index has experienced a rapid growth to reach 2,566 

at the end o f January 2007. This translates into an overall appreciation o f 114.87% over
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the entire 37 months period or, equivalently, 28.15% annually. The evolution of the 

FTSE/ASE-20 throughout the sample period is presented in Figure 5.1.

Daily returns are plotted in Figure 5.2. The mean daily return is 0.1% with a 

standard deviation o f 105 basis points and, as can be seen from  Figure 5.3, the returns’ 

distribution seems to deviate from norm ality.10 In addition, spot returns appear to be an 

1(0) process, since the D ickey-Fuller test for the order of integration produces a t-statistic 

equal to 1.64 and therefore cannot reject the null hypothesis o f a unit root in the time- 

series of arithm etic returns at the 5% significance level.

Figure 5.1
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10 Furthermore, the Jarque-Bera test rejects the null hypothesis for normality in returns and log-retum s at 
the 5% significance level.
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Figure 5.2

FTSE/ASE-20 Daily R eturns
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F igure 5.3
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Not surprisingly, returns of the FTSE/ASE-20 index exhibit an extrem ely high 

correlation with m arket returns, which are proxied by the Athens Com posite Share Price 

Index (ACSPI). In addition to a correlation coefficient of 0.98, this is farther supported 

by the estim ated betas of the index within the standard CAPM  framework. M ore 

specifically, rolling 120-days regressions of the CAPM  equation described in (5.1) are 

estim ated,

E[Rin] = a + pE[RnA + e (5.1)
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where /?,„ is the excess return o f the FTSE/ASE-20, Rm is the m arket risk-prem ium  and e 

is a random  error term. W hen stated in excess returns, the null hypothesis of the CAPM  is 

that a  = 0. As can be seen from Figure 5.4, the resulting betas are very close to unity 

throughout the entire sample period, reflecting the fact that the 20 largest capitalization 

stocks that are included in the FTSE/ASE-20 heavily influence the overall market index.

Figure 5.4

FTSE/ASE-20 beta over time
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5.3 Data

The original dataset consisted o f 15,198 calls and 18,217 puts traded on the Derivatives 

M arket o f the Athens Stock Exchange. The options are European-style and written on the 

FTSE/A SE-20 index which includes the 20 most liquid and largest capitalization Greek 

stocks. All relevant options data is publicly available through the exchange’s website 

(w w w .adex.ase.gr). For every calendar day, option prices are obtained for the two nearest 

expiration dates which are typically more liquid than longer-term  contracts. The options 

expire on the third Friday of the month and settlem ent is in cash.

The dataset runs from January 2004 to January 2007 for a total o f 770 trading 

days. Sim ilarly to previous studies, several filters are employed. First, all options with 

prices that lay outside the well-known theoretical bounds or are near zero are excluded
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from the dataset. M oreover, calls and puts with less than one week (five trading days) to 

maturity are dropped. Finally, options with less than five traded contracts on a given day 

are excluded to avoid illiquidity concerns. The above filters resulted in a reduced dataset 

o f 9,761 calls and 9,212 puts.

Table 5.1 reports some descriptive statistics with respect to the num ber of daily 

observations. A lthough the sample consists of 12.34 calls and 11.90 puts on average per 

calendar day, it can be seen from Figure 5.5 that the num ber o f observations in a day 

exhibits significant variability throughout the period o f January 2004 to January 2007. 

The num ber o f calls (puts) per day exhibits a standard deviation o f 3.26 (2.99) and ranges 

from a m inim um  of 5 to a m axim um  of 23 (24).

Table 5.1

Option Observations per Calendar Day

Calls Puts

Mean 12.34 11.90

M edian 12 12

Standard deviation 3.26 2.99

M inimum 5 5

M aximum 23 24

This Table presents descriptive statistics of the options dataset used. Calls and puts are tabulated separately.

The risk-free interest rate is proxied by Euribor which, along with the underlying 

FTSE/A SE-20 index, was obtained through DataStream. The Athens Com posite Share 

Price Index was obtained by Reuters. The dividend yield o f the underlying asset was 

calculated by using futures contracts on the FTSE/ASE-20 index (futures data are also 

available through the exchange’s website) and solving equation (5.2) for the dividend 

yield:

F0t = SQe(r~q)T (5.2)

where F0r is the value at time 0 of a futures contract on the index expiring at T, S0  is the 

spot price o f the index, r is the risk-free rate and q is the dividend yield.
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Figure 5.5 
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Before proceeding with the empirical analysis, the limitation of using a relatively 

small sample should be acknowledged. The Athens Derivatives Exchange is a 

substantially new m arket that was established in 2000 and, consequently, trading volume 

rem ained at fairly low levels during its first operating years. Trading activity picked up 

significantly, though, after 2004 and this essentially introduces a lower bound to the 

sample period that can be examined. As has already been m entioned in Section 5.2, the 

sample period o f January 2004 to January 2007 corresponds to a significantly ‘bu ll’ 

m arket in Greece with the underlying large-capitalization FTSE/ASE-20 index 

appreciating by more than 28% per year. Therefore, the fact that such a substantially high
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risk-prem ium  characterizes a relatively small sample period will undoubtedly have an 

effect on the sign as well as on the m agnitude of observed option returns in ADEX.

M ore specifically, Coval and Shumway (2001) dem onstrate that under the 

m oderate assum ptions o f the stochastic discount factor being negatively correlated with 

the underlying and of the underlying having a positive expected return (which is obvious 

in the case o f a m arket index in the long term), any call option written on the underlying 

m ust have a positive expected return that is higher than the underlying’s expected return, 

and any put option on the underlying must have an expected return below the risk-free 

rate (see Propositions 1 and 2, respectively, in Coval and Shumway (2001)). Given the 

high positive m arket premium  in Greece during 2004-2007, it is extrem ely likely that call 

options, which represent levered positions in the underlying, will offer returns that are 

positive and significantly high (at least as high as the 28% m arket premium  and 

dependent on the option’s moneyness, i.e. its leverage), while put returns will be negative 

and o f high absolute m agnitude.11

5.4 Implied Moments

5.4.1 Theoretical framework

This Section describes the estim ation of the underlying distribution that is implied by 

option prices. A large part o f past studies has used the Black and Scholes (1973) option 

pricing form ula to infer im plied volatility. Although this has been a significantly popular 

m ethodology throughout the related literature, the Black and Scholes (B&S) implied 

second m om ent relies on certain assumptions, the most restrictive of which is arguably 

the log-norm ality o f the asset’s distribution. Under this set o f assumptions, the theoretical 

price C bs of a European call option is given by:

C bs = S g e '^ m d ,)  -  K e rTN(d2) (5.3)

11 See Appendix B for a more detailed discussion of the Coval and Shumway (2001) predictions on 
theoretical expected option returns.
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where So is the price o f the underlying asset, K  is the ca ll’s exercise price, r is the 

constant risk-free interest rate, q is the asset’s constant dividend yield, T  is the time-to- 

maturity, and N(  •) is the standard normal cum ulative distribution function.

Skiadopoulos (2004) computes an implied volatility index GVIX for the 

FTSE/ASE-20 based on the B&S formula. Using options and futures written on the index 

for the last three months o f 2002, he estimates the B&S implied volatility o f the first 

OTM  call and that o f the first OTM put. The GVIX implied volatility index is then 

defined as the linear interpolation between these two moments, i.e. the implied volatility 

o f the above OTM  synthetic option.

This Section intends to improve on Skiadopoulos (2004) in two ways. First, a 

much larger sample is used in order to observe the variation across time of implied 

volatility. M ost importantly, though, an alternative option pricing model is adopted, 

nam ely the Corrado & Su (1996) option pricing formula, in an attempt to account for the 

observed deviation o f returns from log-normality. This fram ework also has the advantage 

of sim ultaneously estim ating the next two implied moments of the asset’s distribution in 

addition to im plied volatility.

The Corrado and Su (1996) methodology relaxes the log-norm ality restriction by 

m odifying the original B&S form ula to account for non-zero skewness and excess 

kurtosis in the underlying’s distribution using a Gram -Charlier series expansion o f the 

standard normal density function. M ore specifically, they define a density function g(z) 

which accounts for non-normal skewness and kurtosis, described by the following 

equation, where n(z) represents the standard normal density function and n n is the 

standardized coefficient o f the nth moment of the asset’s returns distribution.

g(z )  =  n(z)[ l + ^ ( z J - 3 z ) + ^ ( z 4 - 6 z 2 +3)] (5.4)
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W ithin this framework, a call option’s price is expressed as the sum of the 

theoretical B&S price and two correction terms related to non-normal skewness and 

excess kurtosis. Then, the Corrado and Su (C&S) call option price Ccs  is given by:

Ccs = Cbs + M3 Q3 + (H4-3)Q4 (5.5)

with 03 = — So<jyfT[(2<jyJr - d \ )n{d \ )  + a 2TN(d\)]

04 = — Soay / f [ {d i 2 -1  - 3 a y / f ( d i  - a j r ) ) n { d \ )  + <73r 3/2N(d\)]
4!

where C bs is the theoretical Black and Scholes option price, 0 j  and Q4 represent the 

marginal effects o f non-normal skewness and kurtosis for the option’s price, respectively, 

and n( ) is the standard normal density function.

5.4.2 Empirical Estimation

For each calendar day, option observations are separated based on their respective 

m aturities. Obviously, the first options set includes calls that expire on the nearest 

expiration date, while the second set includes calls expiring on the second-nearest 

expiration date. The differences between m arket prices Cm and theoretical C&S call 

prices Ccs are then com puted for each of the above two groups. The implied moments are 

estim ated as the values o f the moment vector (a, H3 , /J4 ) that m inim ize the sum of the 

following squared errors:

K

K '
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where T  and T'  refer to the nearest and second-nearest expirations, respectively. K  and K'  

denote the num ber o f observations for T  and T\  respectively. This procedure provides 

two im plied vectors for every calendar day, corresponding to different expirations. In 

order to standardize the results to a constant time-horizon, a linear interpolation is used 

between times T  and T\  as shown by equations (5.6), (5.7) and (5.8), to estim ate the 30- 

day period im plied volatility, skewness and kurtosis, respectively.

For notational purposes, the time indicators are dropped throughout the 

subsequent analysis, with a, ft3 and H4 S  denoting 30-day standardized estim ates of 

im plied volatility, skewness and excess kurtosis, respectively, for the 30-day horizon. 

Figures 5.6 to 5.8 present the estim ated vectors of implied moments for the above two 

option groups across time, while Figures 5.9 to 5.11 plot the standardized estimates.

(5.6)

(5.7)

(5.8)

Figure 5.6
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Figure 5.7
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Figure 5.10
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Figure 5.11
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The im plied volatility cr has a mean (median) value of 20.93% (20.36%) and 

ranges between 13.19% and 37.89%. Periods o f high and low volatility are easily 

observable from Figure 5.9, indicating the presence of some autocorrelation in the time- 

series. Although im plied skewness is statistically indistinguishable from zero for most of 

the sample period, it can be seen from Figure 5.10 that there are certain periods o f 

relatively large positive or negative observations. The most easily identifiable such 

periods include the first two months o f 2004, which are characterized by negative 

skewness with a m inim um  of -0.8, as well as the period from July to mid August 2004 

which also exhibits negative skewness. Finally, from Novem ber 2004 to February 2005, 

the implied third m om ent experiences its most volatile period with m any extreme 

observations, both positive and negative. Implied excess kurtosis exhibits a som ewhat

137



www.manaraa.com

sim ilar pattern. Despite the fact that it is near zero in most sample days, the above 

mentioned periods o f extrem e skewness are also characterized by non-normal kurtosis. 

The main difference in the two time-series is the fact that extrem e excess kurtosis does 

not change signs as skewness does, with most outliers lying above zero.

Table 5.2 

Implied Moments

Panel A: Implied M om ents’ Descriptive Statistics

Volatility a 3U Skewness p330 Excess Kurtosis (p4-3)

Mean 0.209 -0.018 0.178
Median 0.204 -0.001 0.009

St. Deviation 0.0383 0.117 0.518
Minimum 0.132 -0.806 -1.59
M aximum 0.379 0.678 3.472

Panel B: Jarque-Bera Test for Normality

Volatility a 30 Skewness p33U Excess Kurtosis ( |i4-3)30

Null Reject Reject Reject

p-value 0 0 0

t-statistic 870.27 6,591 3,249

Critical value 5.99 5.99 5.99

Panel C: Order of Integration

Volatility a 30 Skewness p33U Excess Kurtosis (p4-3)3U

D ickey-Fuller 1(0) t-stat 17.12 13.36 14.72

D ickey-Fuller 1(1) t-stat -136.81 -18.31 -17.49

GPH (d) 0.59 0.27 0.45

This Table presents an analysis o f  the FTSE/ASE-20 implied moments for the period January 2004 to January 2007. 

Panel A provides descriptive statistics, Panel B tabulates the results o f  the Jarque-Bera normality test and Panel C 

discusses the order o f  integration o f  the implied moments based on the Dickey-Fuller test as well as on the Geweke and 

Porter-Hudak estimator.

Panel A of Table 5.2 presents descriptive statistics for the time-series o f the three 

im plied m om ents. Panel B reports the results o f the Jarque-Bera test which rejects 

norm ality for all variables o f interest, while Panel C provides the results for the Dickey- 

Fuller and the Geweke & Porter-Hudak (GPH) test for the variables’ order o f integration. 

As can be seen from the Table, the Dickey-Fuller test rejects the null hypotheses o f a
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being either an 1(0) or an 1(1) process while the GPH estim ator suggests that implied 

volatility is a fractionally integrated process 1(d) with d equal to 0.59. Furthermore, 

sim ilarly to the im plied volatility series, the two higher im plied m oments exhibit 

characteristics o f fractional integration. M ore specifically, the D ickey-Fuller test rejects 

both null hypotheses o f 1(0) and 1(1) for skewness and kurtosis at the 5% significance 

level, while the GPH test estimates skewness and excess kurtosis to be fractionally 

integrated processes 1(d) with d equal to 0.27 and 0.45, respectively.

5.4.3 Alternative Specification

In addition to the above m ethodology for estimating the implied vector [a, n$, ^ 4 ], an 

alternative estim ation of im plied moments is performed. The main difference is the fact 

that option observations on a given day are not grouped according to their respective 

m aturities, as was the case in Section 5.4.2. Instead, the previously m entioned sum of 

squared errors between m arket prices for calls Cm and theoretical Corrado and Su prices 

Ccs is m inim ized across the entire set of options per day, irrespective o f their time to 

expiration.

min SSE(aALT, jUALT , t f LT) = £  [{CM (S, K) -  Ccs (S, K ) f  ]
K = 1

Figure 5.12 plots the estimated implied moments that resulted from this 

alternative m ethodology. W hen compared to the estim ates in Figures 5.9 to 5.11, it can be 

easily seen that, although some patterns are present in both sets of time-series, there are 

also significant differences since all implied moments exhibit higher volatility under the 

alternative estimation.
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Figure 5.12

Implied Moments from Alternative Methodology
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The main disadvantage of this alternative procedure is that it provides only one 

vector o f im plied moments. Since options with different expirations are combined in the 

m inim ization of the SSE, the time horizon that corresponds to the estim ated vector is not 

clear and the resulting SSE are significantly higher than those in Section 5.4.2. More 

specifically, the average SSE for the first methodology, weighted by the num ber of 

available options per expiration date, is 1.22, compared to an average of 7.76 for the 

second one. The time series o f SSE for both estimations are plotted in Figure 5.13.

Figure 5.13
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5.5 Option Returns

5.5.1 Call Options

As has been already m entioned in Section 5.3, the call options dataset (post filtering) 

consists of 9,761 call observations across 770 trading days. Daily arithm etic returns for 

each individual call are com puted using closing prices for each calendar day. Obviously, 

the fact that not all strike prices have traded options on every day reduces the num ber of 

calls for which daily returns can be computed. W henever a specific call is not traded on 

two consecutive trading days, or the call price remains the same over this window, the 

call return is treated as a m issing observation. The above limitations reduce the num ber 

o f com putable daily returns to 6,884 observations.
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Let c, be the price of a call option with strike price K  and time-to-m aturity T. The 

daily arithm etic return R c for this call is estimated as the difference between ct+i and ch 

divided by ct.

(5.9)
c,

Options with different strike prices are likely to earn returns that differ 

significantly. For instance, Coval and Shumway (2001) show that option returns should 

be increasing across strike price space. In order to examine the behaviour o f call returns 

across different strikes, individual calls are sorted into four groups according to their 

m oneyness, using three different moneyness proxies (see also Ni (2006)). These 

moneyness groups are created such that strike prices for a given call are increasing across 

the strike group number, with group 1 including calls with the lowest strikes and group 4 

including calls w ith the highest strikes.

The first m oneyness proxy refers to the ratio of the strike price to the price of the 

underlying index. Being the most typical way of defining moneyness, this ratio ensures 

that different strike prices are normalized by the closing level o f the FTSE/ASE-20. The 

second way of classifying option returns is to divide the logarithm  of the above ratio with 

the volatility o f the underlying. For each calendar day, the historical volatility ot of the 

index is estim ated over the previous 60 trading days:

where Rind,t-i is the return of the FTSE/ASE-20 index on trading day t-i. This method has 

the additional advantage of controlling for the underlying’s volatility. The third 

moneyness proxy is the Black and Scholes option’s delta, with equation (5.10) used to 

estim ate volatility in the B&S formula. The B&S delta sim ultaneously accounts for 

differences in underlying index level, index volatility and tim e-to-m aturity across

(5.10)
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individual options. Panel A of Table 5.3 contains the criteria for assigning call option 

returns to the four strike groups.

After classifying calls according to the above m entioned criteria, summary 

statistics for call returns o f each of the strike groups are computed. Table 5.4 presents the 

mean, standard error and skewness o f call returns across the four groups. T-statistics for 

the null hypothesis that the average call return is statistically indistinguishable from zero 

are in brackets. Finally, the average call B&S beta and average volum e of traded 

contracts for each option category are reported. The B&S beta f}Bs for each call is 

estim ated using equation (5.11) and is of particular interest, since standard asset pricing 

theory predicts that average call returns should increase as p BS increases. Following Coval 

and Shumway (2001), this also implies that fa s  will be higher for calls with higher strikes 

than for their lower strikes counterparts. The intuition behind this theoretical prediction is 

that calls with higher strike prices represent more levered positions in the underlying 

asset and are, therefore, riskier investments.

Table 5.3

Strike Groups

Panel A: Call Options

Strike Group 1 2 3 4

R = K/S R < 0.95 0.95 < R < 1 1 < R <  1.05 1.05 < R

R = ln(K/S)/o R < -0.05 -0.05 < R < 0 0 < R < 0.05 0.05 < R

R = B&S delta 0.75 < R <  1 0.5 < R < 0.75 0.25 < R <  0.5 0 < R < 0.25

Panel B: Put Options

Strike Group 1 2 3 4

R = K/S R < 0.98 0.98 < R <  1 1 < R <  1.02 1.02 < R

R = ln(K/S)/o R < -0.20 -0.20 < R < 0 0 < R < 0.20 0.20 < R

R = B&S delta -0.25 < R < 0 -0.5 < R < -0.25 -0.75 < R < -0.5 -1 < R < -0 .7 5

Panel C: Delta-Neutral Straddle Portfolios

Strike Group 1 2 3 4

R = K/S R < 0 .98 0.98 < R < 1 1 < R <  1.02 1.02 < R

R = ln(K/S)/o R < -0.20 -0.20 < R < 0 0 < R < 0.20 0.20 < R

R = B&S delta -1 < R < -0.50 -0.50 < R < 0 0 < R < 0.50 0.50 < R < 1

This Table presents the cutoff points for assigning calls, puts and delta-neutral straddles into moneyness groups.
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s  In (-?-) + (r - q  + ? - ) t
p c = - N [ - ^ - --------- r -----2 _ ]/? (5.11)

C (Jyjt

As can be seen from Table 5.4, average daily arithmetic returns for call options in 

the Greek m arket are positive and particularly high, compared, for instance, to call 

returns in the US. Panel A refers to strike groups according to the strike to underlying 

ratio, Panel B to the logarithm  of strike-to-underlying divided by <7, and Panel C to the 

B&S delta moneyness proxy. For the first classification method, call returns are found to 

be statistically significant from groups 2 to 4, and m arginally significant for the first 

group, ranging from a minim um  of 1.15% daily for the low-strike, m ost in-the-money 

calls to a m axim um  of 3.81% for the high-strike, most out-of-the-m oney ones. These 

figures correspond to annual returns of roughly between 288% and 953%, depending on 

the options’ moneyness, and are much higher than returns of calls written on the S&P 

500, which have been around 100% per annum (see Coval and Shumway (2001)). Results 

from  Panels B and C are similar, with the exception of call returns for the highest-strike 

group in Panel C being only m arginally significant, although relatively high in absolute 

magnitude.

Furtherm ore, average call returns appear to support theoretical predictions, in the 

sense that they are strictly increasing across strike price space. The average B&S betas 

for the four groups are also increasing as the strike increases, indicating that options 

which exhibit a higher correlation with the market tend to earn higher returns on average 

than options which are more weakly correlated with the market. For instance, when calls 

are assigned to K/S  groups, p Bs ranges from 14.07 for the low-strike group to 36.71 for 

the high-strike one.
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Table 5.4

Summary Statistics for Call Options and their Daily Returns (closing price)

Strike Group 1 2 3 4

Panel A: K/S

Call Beta 14.07 22.70 32.29 36.71
Call Volume (Contract) 29.09 108.16 209.73 118.32
Average Call Return 0.0115 0.0222 0.0242 0.0381
t-stat (1.68) (4.13) (3.54) (2.53)
Call Return St. Dev 0.1644 0.2601 0.3725 0.4809
Call Return Skewness 0.0779 0.2988 0.8601 1.4085
No. o f Obs 576 2,329 2,963 1,014

Panel B : ln(K/S)/o

Call Beta 14.23 22.76 32.33 36.78

Call Volume (Contract) 29.06 109.06 208.37 118.48

Average Call Return 0.0130 0.0220 0.0240 0.0393

t-stat (1.90) (4.05) (3.53) (2.54)

Call Return St. Dev 0.1677 0.2605 0.3738 0.4819

Call Return Skewness 0.1355 0.2987 0.8537 1.4381

No. o f Obs 602 2,303 3,006 971

Panel C: B&S delta

Call Beta 15.87 21.73 30.90 44.42

Call Volume (Contract) 41.31 99.81 195.30 135.59

Average Call Return 0.0141 0.0159 0.0299 0.0334

t-stat (1.90) (3.07) (4.95) (1.50)

Call Return St. Dev 0.1721 0.2438 0.3540 0.5866

Call Return Skewness -0.1030 0.2828 0.8311 1.1761

No. o f Obs 538 2,195 3,453 697

This Table tabulates summary statistics o f  call returns across the period January 2004 to January 2007. Calls have been 
assigned to moneyness groups according to the cutoff points in Panel A o f  Table 5.3.

Another interesting finding is the m onotonic relationship between the variability 

and the skewness o f call returns, and the strike group. Call returns are found to be 

generally positively skewed, the only exception being the negative skewness in the low- 

strike group for the B&S delta classification. In addition to being m ostly positive, 

skewness across the strike groups is found to be increasing across the group number, such 

that deep ITM calls exhibit the lowest skewness while deep OTM  ones exhibit the highest
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skewness. W ith respect to the volatility of option returns, calls in the lowest-strike 

category tend to earn returns that exhibit less variability, based on the standard error of 

the distribution, while returns o f higher-strike calls are more volatile. Finally, the average 

num ber o f traded contracts per group appears to be increasing in the group num ber for 

groups 1 to 3, since the m ost ITM calls have the fewest traded contracts and group 3 has 

the highest num ber o f contracts per option. This monotonic relationship, though, does not 

hold for the most OTM  calls, which appear to have less traded contracts than the options 

in group 3. These results are not surprising as it’s usually the case that options that are the 

closest to being at-the-m oney (groups 2 and 3) tend to be more heavily traded and, thus, 

more liquid than those that are further in or out o f the money (groups 1 and 4).

Overall, call returns in the Greek options market are substantially higher than the 

returns o f calls in developed markets. Conforming to theoretical predictions, uncovered 

positions in calls have earned returns in excess o f the underlying asset and increasing in 

the strike price.

5.5.2 Put Options

The initial put options dataset consisted of 9,212 put observations for the time-period 

running from January 2004 to January 2007. W ith p t denoting the closing price at day t of 

a put option with strike K  and time-to-m aturity T, the daily arithmetic return Rp of the 

option is calculated as:

R PjuZ E l  (5 .12)
Pt

W henever a specific put does not have traded contracts for two consecutive days 

or the put price remains the same over this window, the corresponding put return is 

treated as a m issing observation. This results in a reduced dataset o f 6,482 put returns.

Sim ilarly to the m ethodology used in the previous subsection for call options, puts 

are assigned into four strike groups, using the same three proxies for the options’ 

moneyness. Panel B of Table 5.3 presents the cutoff points, with strike price increasing as
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the group num ber increases. This means that group 1 includes put options with the lowest 

strikes while group 4 includes puts with the highest strikes. However, contrary to calls in 

Panel A, moneyness for put options in Panel B moves in the opposite direction, with 

group 1 representing deep OTM  puts and group 4 representing deep ITM ones.

Table 5.5 reports the mean, standard error and skewness o f put returns across the 

four strike groups, for all three definitions o f moneyness. T-statistics o f the average 

return being different from zero (in brackets) are also reported, as well as the average put 

beta and average num ber o f traded contracts. The B&S beta o f a put option is estimated 

using the following equation:

s  In (^r) + ( r - q  + ̂ r)t
0 P = — N [ ---------- K  j -------2 — \ P S ( 5 J 3 )

c (Jyjt

As can be seen from Panel A in Table 5.5, daily arithmetic put returns in the 

Greek m arket have been highly negative and statistically significant for all strike groups, 

ranging from a m inim um  of -5.05% for low-strike, deep OTM puts, to a m axim um  of - 

2.49% for high-strike, deep ITM ones. Not surprisingly, puts with higher betas (in 

absolute terms) tend to earn more negative returns than their lower beta counterparts. 

This m akes intuitive sense since puts with high (absolute) betas have relatively low strike 

prices, representing more levered positions in the underlying asset, and are, thus, 

perceived as m ore risky investments. W hen puts are assigned into groups using the other 

two moneyness proxies in Panels B and C, results are similar.

Table 5.5 appears to confirm  the theoretical prediction of put returns increasing in 

strike price space. As options move from the low-strike puts in group 1 to the high-strike 

ones in group 4, average returns increase by becom ing less negative, and this monotonic 

relationship holds for all three option classifications. M oreover, the volatility and 

skewness o f returns is m onotonically decreasing in strike price, with skewness remaining 

positive in all categories. For instance, deep OTM  puts in the lowest strike group 1 

exhibit the highest standard error (0.42) and skewness (1.81), while high-strike, deep 

ITM puts in group 4 have returns that are much less volatile (st. error 0.20) and skewed
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(0.82). Finally, unlike calls which are more liquid they closest they get to being ATM, 

put options appear to be more heavily traded when they are OTM . Puts in group 2 are the 

most liquid, in terms o f average traded contracts, with group 1 being the second most 

liquid category. Deep ITM puts are much less liquid, with average trading volume being 

3 or 4 times lower than that o f the first two strike groups of OTM  puts.

Table 5.5

Summary Statistics for Put Options and their Daily Returns (closing price)

Strike Group 1 2 3 4

Panel A: K/S

Put Beta -36.11 -28.00 -23.04 -16.51
Put Volume (Contract) 115.68 141.99 75.85 36.16
Average Put Return -0.0505 -0.0482 -0.0363 -0.0249
t-stat (-6.91) (-5.58) (-4.53) (-3.91)
Put Return St. Dev 0.4198 0.2988 0.2522 0.2008

Put Return Skewness 1.8057 1.1375 0.9235 0.8159

No. of Obs 3,303 1,198 989 991

Panel B: ln(K/S)/a

Put Beta -38.30 -30.50 -21.15 -13.16

Put Volume (Contract) 90.20 148.52 62.22 26.14

Average Put Return -0.0532 -0.0473 -0.0337 -0.0160

t-stat (-5.39) (-6.82) (-5.72) (-1.72)

Put Return St. Dev 0.4405 0.3471 0.2379 0.1717

Put Return Skewness 1.8081 1.6253 0.9160 0.5660

No. of Obs 1,994 2,507 1,638 342

Panel C: B&S delta

Put Beta -43.79 -27.67 -21.20 -16.74

Put Volume (Contract) 113.78 132.66 74.19 29.97

Average Put Return -0.0537 -0.0430 -0.0374 -0.0361

t-stat (-4.90) (-6.39) (-6.18) (-4.56)

Put Return St. Dev 0.4749 0.3248 0.2445 0.2003

Put Return Skewness 1.7023 1.6737 0.8470 0.6410

No. o f Obs 1,875 2,331 1,635 640
This Table tabulates summary statistics of put returns across the period January 2004 to January 2007. Puts have been 
assigned to moneyness groups according to the cutoff points in Panel B of Table 5.3.

148



www.manaraa.com

Overall, put options in the Greek market earn negative returns which are 

decreasing (in absolute terms) as strike price increases, in line with theoretical predictions 

as well as with empirical findings from other options markets. The returns, however, of 

short positions in Greek puts are significantly larger than those docum ented in developed 

markets, ranging from 400%  to 1,342% per year, depending on the strike price and on the 

moneyness criterion. This implies an asymmetric relationship between returns of calls 

and puts o f sim ilar moneyness, since average put loses significantly outweigh average 

gains from  their corresponding calls.

5.5.3 Option Returns Using the Last Trade Price

The previous two subsections examine returns using closing option prices. In addition to 

this being a com m on m ethodology in the literature, the Athens Derivatives Exchange also 

states that closing prices are quoted to reflect a representative estim ate of the ‘true’ value 

o f an option contract at the end of each trading day. Although closing levels are typically 

considered to be a m ore appropriate proxy for the underlying ‘true’ value of the option, 

sum m ary statistics of call and put returns using the price of the last executed trade o f the 

day are also reported.

Table 5.6 presents the results for option returns using last trade prices, grouped 

under the delta moneyness classification. As can be seen from Panel A, call returns are on 

average higher for all strike groups when last trade prices are being used, im plying that 

last trade prices are on average lower than closing prices across all groups. For instance, 

deep OTM  calls are found to earn 4.59% per day under the last trade definition, 

com pared to 3.34% under the closing price one. Also, with the exception o f deep OTM 

calls, the standard deviation o f returns as well as the B&S betas are also higher under the 

new proxy. Sim ilarly to call options, puts are found to earn higher (more negative) 

returns using last trade prices (see Panel B). Only deep ITM contracts in group 4 earn 

slightly lower returns under the last trade proxy com pared to closing prices (-3.55% and 

3.61%, respectively).

149



www.manaraa.com

Table 5.6

Summary Statistics for Options and their Daily Returns (last trade price)

Strike Group 1 2 3 4

Panel A: Call Options

Call Beta 19.91 26.76 35.18 38.41
Call Volume (Contract) 7.87 7.45 7.83 14.44
Average Call Return 0.0185 0.0223 0.0366 0.0459
t-stat (2.76) (2.26) (3.13) (3.53)
Call Return St. Dev 0.21 0.30 0.39 0.45

Call Return Skewness -0.08 0.91 1.01 1.05

No. of Obs 960 950 1,124 1,210

Panel B: Put Options

Strike Group 1 2 3 4

Put Beta -37.47 -34.55 -25.75 -18.20

Put Volume (Contract) 12.16 8.04 7.04 7.12

Average Put Return -0.0549 -0.0490 -0.0438 -0.0355

t-stat (-4.71) (-4.20) (-4.43) (-3.37)

Put Return St. Dev 0.41 0.39 0.29 0.25

Put Return Skewness 1.09 1.92 1.70 0.76

No. o f Obs 1,244 1,098 833 565

This Table tabulates summary statistics of the returns of calls and puts in Panels A and B, respectively. The sample 
period runs from January 2004 to January 2007. Options have been assigned to moneyness groups according to the 
delta criterion.

Furtherm ore, the theoretical prediction of option returns increasing as strike price 

increases is still supported by the results of this alternative m ethodology, for call as well 

as for put options. Finally, differences between option returns across different strike 

groups are larger than those previously reported.

5.6 Estimation of Options’ Risk-Adjusted Returns

5.6.1 Single-Factor CAPM

Option returns in the Greek market were found to be surprisingly high between January 

2004 and January 2007. Call returns have ranged from around 300% for deep OTM  calls 

to 950% for deep ITM ones, on an annual basis, while short positions in deep ITM and 

deep OTM  puts have earned annual returns o f roughly 1,250% and 650%, respectively.

150



www.manaraa.com

Since options are risky financial assets, standard asset pricing theory predicts that they 

should earn returns that are com m ensurate with their systematic risk. The Capital Asset 

Pricing M odel, in particular, expresses the expected excess return o f an option as a linear 

function o f the option’s beta and the expected market risk-premium:

E[Ri - R f] = p iE[Rind- R f] (5.14)

where /?, is the return o f the ith option, /?, is the option’s beta, R ind is the return o f the 

FTSE/ASE-20, R f is the risk-free rate, and E[ ] is an expectation operator. W ithin the 

CAPM  fram ework, calls that exhibit a higher covariance with the index, as measured by 

the call’s B&S beta, are expected to earn on average higher returns than their lower 

covariance counterparts. Put options, on the other hand, were shown to have negative 

betas, which are decreasing in absolute terms as strike price increases. Therefore, puts 

with more negative betas are expected to earn more negative returns than their lower (in 

absolute magnitude) beta counterparts.

In order to test the above theoretical predictions, equation (5.15) is regressed 

separately for calls and for puts across different strike groups

Ri — R f = rjo + q if}i{Rind-Rf) + £ (5.15)

where r|0 is the intercept term, rp is the risk-premium earned by the ith option, and e is a 

random  error term. Under the C A PM ’s null hypothesis for this test, the intercept should 

be statistically indistinguishable from zero (r|0=0) and the risk-prem ium  should be equal 

to unity (rp = l), for both calls and puts.

Table 5.7 reports the regression results for all strike groups of calls and puts, 

under the B&S delta classification. As can be seen from Panel A, the risk-prem ium  of 

calls, m easured as the slope coefficient o f (5.15), is significantly positive in all cases, 

ranging from 0.86 to 1.03. M ore importantly, risk-prem ia are found to be statistically 

indistinguishable from one for ITM calls in groups 1 and 2, and very close to (albeit 

statistically different from) the theoretical value o f unity for OTM  calls in groups 3 and 4.
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In addition to estim ated risk-prem ia lying close to unity, mostly insignificant 

intercepts provide further evidence o f the C A PM ’s ability to explain observed call 

returns. For instance, r|o is found to be statistically insignificant for ITM as well as for 

deep OTM  calls (groups 1, 2 and 4), with only OTM  contracts in group 3 having a 

significant r|o- Finally, it should be noted that the explanatory power o f the model, 

measured by the Adjusted R 2, is relatively high, ranging from a m inim um  o f 65% (deep 

OTM ) to a m axim um  of 90% (deep ITM), indicating that the combination of call betas 

and the m arket risk-prem ium  can explain a relatively high proportion o f the variance of 

call returns.

Table 5.7

Estimated Regression Coefficients of the CAPM

Ri -  Rf -  rj0 + riiPi[Rind-Rf] + e

Strike Group 1 2 3 4 All

Panel A: Calls

no -0.0038 -0.0022 -0.0068 0.0112 -0.0026
t-stat (tj0=0) (-1.65) (-1.08) (-2.39) (0.86) (-1.28)

ni 1.0254 0.9858 0.9476 0.8595 0.9291

t-stat (r]i=0) (70.22) (112.55) (110.20) (35.91) (144.91)

t-stat (r]/ = J) (1.74) (-1.62) (-6.09) (-5.87) (-11.06)

Adj. R2 0.90 0.85 0.78 0.65 0.75

Panel B: Puts

no -0.0285 -0.0143 -0.0115 -0.0118 -0.0184

t-stat (rjo=0) (-4.90) (-4.81) (-4.89) (-4.54) (-8.70)

ni 0.8627 0.9806 0.9931 0.9919 0.9158

t-stat (t]i=0) (69.37) (98.48) (96.04) (73.43) (145.16)

t-stat (t]i= l) (-11.04) (-1.95) (-0.67) (-0.60) (-13.35)

Adj. R2 0.72 0.81 0.85 0.89 0.76

This Table tabulates the results from estimating the standard CAPM regression on the daily returns of options written 
on the FTSE/ASE-20 index. The sample period runs from January 2004 to January 2007. Results for calls and for puts 
are presented in Panels A and B, respectively.

Panel B of Table 5.7 reports regressions results across all put sub-samples. Risk- 

prem ia are statistically indistinguishable from unity for ITM puts (groups 3 and 4) and 

only m arginally different from one in the case of OTM  puts in group 2. The rji coefficient
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for deep OTM  puts in group 1 is the only exception, since it is found to be significantly 

lower than its theoretical value o f one.

Regarding the intercept terms, r|0 is significantly negative in all cases. Proxied by 

the regression’s intercept, put risk-adjusted returns are m onotonically increasing 

(decreasing in absolute terms) across strikes, with deep OTM puts losing 2.85% and deep 

ITM ones losing 1.18% on a daily basis. Finally, the Adjusted R2 is again relatively high, 

exceeding 89% for deep ITM contracts, indicating that the C A PM ’s beta has significant 

explanatory power over put returns.

The com m on empirical finding of puts earning significantly negative returns after 

accounting for their risk exposure has frequently been referred to as the ‘overpriced puts 

puzzle’. On the one hand, due to their ‘insurance-like’ characteristics, it is hardly 

surprising that index puts are traded at negative risk-prem ium s since they are negatively 

correlated with the market. Investors are, therefore, w illing to pay more for puts given 

that they offer payoffs during ‘dow n’ markets, and the leverage inherent in option 

contracts suggests that this risk-prem ium ’s magnitude is likely to be large.

On the other hand, most models have so far failed to describe what this risk- 

premium  should be. For instance, Bondarenko (2003) argues that the substantially high 

returns o f selling S&P 500 puts are not only incompatible with two standard asset pricing 

models, nam ely the CAPM  and R ubinstein’s (1976) model, but also that ‘...n o  model 

within a fairly broad class of models can possibly explain the put anom aly’. Sim ilar 

conclusions have been reached by Bollen and W haley (2004), Buraschi and Jackwerth 

(2001), and Coval and Shumway (2001).

This anom aly could potentially be explained through the dynamics o f supply and 

dem and for calls and puts in an imperfect market. M ore specifically, Amin, Coval and 

Seyhun (2004) suggest that portfolio insurance considerations as well as market 

m om entum  extracted from  past returns have a significant effect on the supply and 

dem and for different types o f options. Furthermore, increases in index volatility are likely 

to drive investors to seek a reduced exposure to the equity m arket and to bid up the prices 

o f puts relative to calls, while the reverse could be the case if  index volatility decreases.

Overall, options in the Greek market appear to be positively related with B&S 

betas, after controlling for the m arket risk-premium. In the m ajority o f cases, the slope
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coefficients o f the CAPM  regressions are statistically indistinguishable from the 

theoretical value of unity for both call and put options, while intercepts are equal to zero 

for calls but significantly negative for puts. The above results seem to imply that the 

linear risk-retum  relationship of the standard, single-factor CAPM  goes some way into 

explaining observed option returns in the Greek market.

5.6.2 Extended CAPM

In the m ean-variance world of the CAPM , investors are com pensated only for bearing the 

systematic risk stem m ing from asset returns’ covariance with m arket returns. Recent 

options literature, though, docum ents an additional risk-factor being priced in the options 

market, nam ely changes in the underlying’s volatility. Since options are more valuable 

when volatility is high, volatility changes should be directly related to option prices and, 

therefore, option returns. In order to account for this additional risk-factor, an extended 

version o f the CAPM , described in (5.16) is tested:

R , ~ Rf  +  + f  (5.16)

where vega , is the ilh option’s B&S vega, A almp is the daily change in the FTSE/ASE-20 

im plied volatility, Qi is the market price of option i, and r |2 is the corresponding risk- 

premium. The option’s vega is defined as the first derivative o f the option’s price V  with 

respect to the underlying’s volatility a (dW/do), and it measures the sensitivity o f the 

option’s price to changes in a. In the context of the above regression specification, a  is 

defined as the ATM  im plied volatility12. Due to the use o f m arket prices of ATM  calls in 

extracting an estim ate o f one o f the explanatory variables in (5.16), daily returns o f ATM  

calls are excluded from the dependent variable vector [/?, -  Rf] since they would provide a 

near-perfect fit in the regression and would, therefore, introduce some bias into the 

estim ated coefficients.

12 The ATM implied volatility is estimated by substituting CBS with the actual market price o f the nearest- 
to-the-m oney call in the Black and Scholes formula, and then solving for the volatility param eter a.

154



www.manaraa.com

It should be noted that equation (5.16) represents an extended version of the 

CAPM  in the sense that it requires option returns to be a function o f the CAPM  market 

risk-prem ium  as well as o f volatility changes. Although changes in the underlying’s level 

and volatility are obviously linked to option returns, the rationale for including these two 

terms in the regression specification differs significantly. M ore specifically, the market 

risk-prem ium , proxied by the excess return o f the index, is assumed to be a determinant 

o f index option returns based on option theory linking the return o f the option with that of 

the underlying, as well as on the rigorous theoretical fram ework o f the CAPM . On the 

other hand, the risk-prem ium  associated with changes in the volatility o f the underlying 

enters the extended specification based only on option theory and em pirical findings 

suggesting that option prices (and, hence, option returns) are positively related to changes 

in the underlying’s volatility. Therefore, equation (5.16) can only loosely be interpreted 

as an extended version of the CAPM , since the additional vegatA<Jimp term is not the result

o f a rigorous theoretical derivation. This limitation also suggests that the theoretical 

volatility risk-prem ium  r|2 is not straightforward to predict, and the subsequent analysis 

reports only its statistical significance, i.e. statistical difference from zero.

Panels A and B of Table 5.8 report regression results o f the extended CAPM  for 

calls and puts, respectively. W ith respect to call options, it appears that introducing A aimp 

in the regression does not significantly alter the estim ated intercepts r)0 or the slope 

coefficients rp. Consistent with theoretical predictions, calls are found to earn a 

significant volatility risk-prem ium , with r|2 being significantly positive for all strike 

groups. Results for put options are not as straightforward at those for calls. A lthough the 

slope coefficients y\\ are still very close to unity, intercept terms remain significantly 

negative. Furtherm ore, r|2 remains positive for all groups, confirm ing the theoretical 

prediction o f changes in volatility being positively related to changes in the value o f the 

option. Finally, the correlation between the two main regressors in (5.16), nam ely 

between [Rind -  Rf] and Aaimp, is -0.10 over the sample period. A lthough a negative 

correlation between the market risk-prem ium  and changes in index volatility is to be 

expected since it is a well-documented em pirical finding that index volatility is 

system atically higher following a negative index return com pared to a positive return of 

sim ilar magnitude, it could be argued that the low level o f dependence between the two
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explanatory variables suggests that the regression results are relatively free of collinearity 

concerns.

Table 5.8

Estimated Regression Coefficients of the extended CAPM

R , ~ R , - R f ] + ri2vega£(J imp
1

—  +  £  a
Strike Group 1 2 3 4 All

Panel A: Calls

no -0.0039 -0.0023 -0.0075 0.0038 -0.0038
t-stat (t]0=0) (-1.77) (-1.24) (-2.86) (0.31) (-2.00)

ni 1.0152 0.9979 0.9623 0.9023 0.9496

t-stat (rji=0) (72.97) (121.56) (120.68) (40.81) (159.71)

t-stat (th = l) (1.09) (-0.26) (-4.72) (-4.42) (-8.48)

n2 6.6113 0.9552 0.6889 1.0664 0.8197

t-stat (rj2=0) (7.76) (17.92) (24.20) (12.02) (34.71)

Adj. R2 0.91 0.87 0.81 0.71 0.79

corr(Rind-Rf, Aaimp) -0.01 -0.10 -0.09 -0.23 -0.11

Panel B : Puts

no -0.0298 -0.0160 -0.0120 -0.0112 -0.0194

t-stat (rj0=0) (-5.20) (-5.42) (-5.14) (-4.34) (-9.28)

ni 0.8661 0.9798 0.9920 0.9907 0.9175

t-stat (r]i=0) (70.57) (99.53) (97.17) (73.71) (147.32)

t-stat (rh= l) (-10.91) (-2.05) (-0.78) (-0.69) (-13.24)

m 0.0865 0.0990 0.2007 0.3056 0.0924

t-stat (q2=0 ) (7.34) (7.44) (6.62) (2.88) (13.15)

Adj. R2 0.73 0.81 0.85 0.90 0.77

corr(RimrRf , Aaimp) 0.03 -0.04 -0.01 -0.01 -0.08

This Table tabulates the results from estimating the extended CAPM on the daily returns of options written on the 
FTSE/ASE-20 index. The estimated coefficients for calls and for puts are presented in Panels A and B, respectively. 
The sample period runs from January 2004 to January 2007, and options have been assigned to moneyness groups 
based on the cutoff points of Table 5.3. The last row of each Panel tabulates the correlation between the two dependant 
variables, namely between the excess return of the market and the daily change in implied volatility.
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5.7 Straddles

In the previous Sections, options in the Greek market were found to earn significantly 

higher returns than those traditionally earned by options in developed markets. Daily 

returns of uncovered, long positions in calls have been positive, increasing across strike 

price, and significantly higher than the relatively large market risk-prem ium  for the 

sample period. Uncovered, long positions in puts, on the other hand, have earned 

significantly negative returns, which are also increasing (decreasing in m agnitude) as 

strike price increases. Although a positive relationship was docum ented between the 

above returns and the C A PM ’s systematic variance, as well as changes in the 

underlying’s volatility, significantly negative intercepts for put options suggest that 

additional risk-factors m ight be priced in the Greek market.

This Section shifts the attention from individual options to option portfolios. M ore 

specifically, the Section examines returns of portfolios formed by com bining long/short 

positions in calls and puts, in a way that ensures the resulting portfolios have zero 

exposure to at least one o f the widely accepted sources of risk in the options market.

5.7.1 Delta-Neutral Straddles

Delta-neutral portfolios are formed by combining long positions in calls and puts o f the 

same m oneyness, with moneyness defined as (1 - Kc/erTS) and (Kp/erTS - 1) for calls and 

for puts, respectively. In order to estim ate the weights w c and wp o f the portfolio’s value 

that correspond to investing in calls and puts, respectively, the following two equations 

are sim ultaneously solved. The first equation stems from the straddle’s delta (delta , ), 

which is a linear com bination o f individual options’ deltas (<deltac and deltap), being equal 

to zero, while the second one reflects the fact that the possible com binations are restricted 

to only long positions in same-moneyness options. Obviously, since B&S deltas are by 

definition positive for call options and negative for put options, there is only one possible 

com bination that satisfies both of these conditions.
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d e l ta s =  Wcdeltac +  Wpdeltap =  0

W c +  W p =  1

Since both beta and delta are measures o f an option’s sensitivity to changes in the 

value o f the m arket index, they are effectively proxies for the same type o f market risk. In 

other words, delta-neutral portfolios o f index options can also be considered as beta- 

neutral positions. In the CAPM  world, systematic variance, proxied by a security’s beta, 

is the only source o f risk that is priced in the market. Therefore, a delta-neutral index 

straddle has zero exposure to systematic risk, and should earn the risk-free rate of return.

Table 5.9 presents descriptive statistics for the daily returns o f delta-neutral 

straddles across the four moneyness groups. These groups are formed such that 

moneyness increases as options move from the first group to the fourth one, with group 1 

including long positions in deep OTM options and group 4 including deep ITM ones. As 

can be seen from the Table, delta-neutral portfolios are found to earn relatively low 

returns which are increasing across moneyness. M ore specifically, deep OTM straddles 

lose around 3 basis points, while deep ITM portfolios earn 38 basis points on a daily 

basis, with average returns increasing as we move from group 1 to group 4. More 

importantly, though, straddle returns are statistically indistinguishable from the risk-free 

rate for all moneyness groups, confirming theoretical predictions that option 

com binations that are im mune to changes in the value of the underlying should be 

considered as risk-free and, therefore, have returns equal to the daily risk-free rate. In 

addition, straddle returns exhibit low volatility (roughly 1% across all groups), slightly 

negative skewness and negative excess kurtosis.

Overall, results from examining delta-neutral straddles provide some support for 

the validity o f the Black-Scholes model as well as the CAPM  is the Greek options 

market. However, although the theoretical prediction that portfolios with zero delta-risk 

should offer returns that are equal to the risk-free rate is em pirically confirmed, it should 

be noted that delta-neutral straddles are potentially exposed to other sources o f risk. For 

instance, long positions in these straddles typically have high volatility betas and are, 

therefore, more profitable in periods of high volatility.
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Table 5.9

Daily Returns of Delta Neutral Straddles

M oneyness Group m < -0.03 -0.03 < m < 0 0 < m < 0.03 0.03 < m

Average -0.0003 0.0013 0.0017 0.0038
St. Error 0.01 0.01 0.01 0.01
t-stat (-0.03) (0.13) (0.18) (0.44)

M edian 0.0002 0.0014 0.0019 0.0040

Skewness -0.17 -0.22 -0.18 -0.12

Kurtosis 1.22 1.11 1.09 0.14

No of Obs. 2,347 1,852 1,341 1,022
This Table presents summary statistics of the daily returns of delta-neutral straddles across the sample period from 
January 2004 to January 2007. The t-statistics in brackets refer to the average daily straddle return being statistically 
significant from the daily risk-free rate. The daily risk-free rate (proxied by Euribor) was roughly equal to 1 basis point 
(or equivalently 2.72% per annum) during the sample period.

5.7.2 Delta and Vega Neutral Straddles

In the previous subsection, com binations of long positions in calls and puts were formed 

such that the exposure o f the overall position to market risk, given as the weighted 

average o f the options’ deltas, was zero. Although this m ethodology ensures that the 

resulting portfolio is effectively im mune to changes in the value of the FTSE/ASE-20, 

such call-put com binations are not necessarily risk-free. An additional, widely recognised 

source o f risk in the options market refers to changes in the level o f the underlying’s 

volatility until the option’s expiration, and it is measured by the option’s vega (5V/3o). 

Intuitively, since the value o f an option is positively related to the future volatility a  of 

the underlying, changes in volatility will affect the option’s price and, consequently its 

expected return.

The m ethodology o f Liu (2007) is followed to create delta and vega neutral 

portfolios by com bining long positions in the underlying and in puts with short positions
rj  j/p

in calls o f sim ilar moneyness, with moneyness defined as (1 - K Je  S) and (Kp/e S  - 1) 

for calls and puts, respectively. M ore specifically, on each calendar day, delta and vega 

neutral straddles are formed by buying one unit o f the index and wc units of the call, 

while selling wp units o f the put, the m oneyness o f which is the closest to the call’s
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moneyness. In order for the straddle’s exposure to delta and vega risk to be zero, the 

following conditions m ust be met:

deltas = 1 + Wcdeltac + wpdeltap = 0 

vegas = wcvegac + wpvegap = 0

Obviously, the delta of the underlying is equal to one and its vega is zero. Also, 

calls have positive deltas and puts have negative ones, but both options have positive 

vegas. Therefore, wp must be positive and wc negative to ensure that deltas -  vegas = 0. In 

total, 6,562 delta and vega neutral straddles are formed following the previously 

described m ethodology. The average difference in moneyness between calls and puts is 

0.0126, with 69% of straddles including options with m oneyness levels that differ by a 

m axim um  of 0.01. Straddles are then assigned to four groups based on their moneyness, 

with group 1 including com binations of options that are deep OTM  and group 4 including 

deep ITM options. Panel A of Table 5.10 presents summary statistics for the daily returns 

o f delta and vega neutral straddles, across the four moneyness groups.

The null hypothesis of interest is that straddles with zero risk-exposure to market 

m ovem ents and to volatility changes must earn the risk-free rate. Indeed, it is found that 

daily straddle returns for all moneyness groups are statistically indistinguishable from 

zero, as well from the daily risk-free rate. Average returns are increasing across 

m oneyness, with deep OTM  straddles earning negative returns (0.09%) and deep ITM 

straddles earning the highest positive returns (0.35%).

A lthough these results are in line with theoretical predictions, it should be noted 

that this m ethodology suffers from a relatively well known limitation. M ore specifically, 

B&S delta and vega are measures o f local sensitivity, referring to expected changes in the 

option’s price for a marginal change in the index’s level and volatility, respectively. 

Therefore, straddles created in the above way will be delta and vega neutral only 

instantaneously and with respect to very small changes in the FTSE/ASE-20 and its 

volatility. In order to ensure near-zero risk-exposure, straddles have to be rebalanced 

regularly, at the obvious expense o f higher transaction costs. For instance, Liu (2007)
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argues that such portfolios start off delta and vega neutral, but the neutrality is 

unlikely to hold in one w eek’s tim e’. In this study, straddle returns are examined at a 

daily frequency in an attempt to minimise the impact o f changing delta/vega across our 

holding period and it is found that, even without considering the substantially higher 

transaction costs, the null hypothesis o f straddles earning the risk-free rate cannot be 

rejected.

Table 5.10

Daily Returns of Delta and Vega Neutral Straddles

M oneyness Group m < -0.03 -0.03 < m < 0 0 < m < 0.03 0.03 < m

Panel A: Summary Statistics for Delta and Vega Neutral Straddles

Average -0.0009 0.0006 0.0009 0.0035
St. Error 0.02 0.01 0.01 0.02
t-stat (-0.06) (0.04) (0.06) (0.22)

M edian -0.0003 0.0010 0.0010 0.0038
Skewness 0.19 0.07 0.40 0.04

Kurtosis 2.85 1.70 2.00 0.60

No of Obs. 2,347 1,852 1,341 1,022

Panel B: Estimated Regression Coefficients

E [R J = tj0 + r},E[Rind]  + rj2Aaimp + e

no -0.003 -0.002 -0.004 -0.006

t-stat (-2.17) (-1.22) (-1.64) (-2.03)

ni 0.050 -0.053 -0.005 -0.021

t-stat (1.71) (-1.58) (-0.11) (-0.39)

0.012 0.014 0.023 0.047

t-stat (1.62) (1.63) (2.07) (3.23)
Panel A of this Table tabulates summary statistics of the returns of delta and vega neutral straddles for the sample 
period January 2004 to January 2007. Panel B tabulates the results of estimating the extended CAPM on the daily 
returns of the straddles.

In order to determ ine whether straddles are indeed delta and vega neutral, 

portfolio returns are regressed against the future changes in the underlying FTSE/ASE-20 

and the future changes in implied volatility that corresponds to the period until the 

options’ expiration, using equation (5.17).
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E[RS] = rjo + rnE[Rind\ + tj2Aa  + e (5.17)

where Rs is the daily straddle return, and A o  is the daily change in B&S implied volatility. 

Under the assum ption of delta and vega neutrality, the null hypothesis is that r|o = r|i = r|2 

= 0, and Panel B of Table 5.10 reports the regression results across the four moneyness 

groups.

The first thing to notice is that r\\ is insignificant for groups 2 to 4 and borderline 

insignificant for deep OTM  options in group 1. In effect, straddles across all moneyness 

categories remain approxim ately delta-neutral during the trading day o f interest and are, 

thus, not affected by changes in the level of the underlying index. However, although 

delta neutrality seems to hold, not all straddle types are vega neutral. The vega-neutrality 

coefficients r|2 for OTM  groups 1 and 2 are m arginally insignificant with t-stats equal to 

1.62 and 1.63, respectively, while ITM straddles in groups 3 and 4 have significant r|2s (t- 

stats are 2.07 and 3.23, respectively).

In summary, delta and vega neutral straddles appear to earn returns that are 

statistically indistinguishable from the daily risk-free rate, irrespective of their 

moneyness. This finding supports the theoretical prediction that positions that are 

im mune to the two most com m on sources of risk in the options market, namely changes 

in the level o f the underlying and changes in the underlying’s volatility, should earn the 

risk-free rate. In addition, although straddle returns have been calculated using closing 

option prices, it should be mentioned that the results remain unchanged even when last 

trade prices are used instead. However, when interpreting these results, one should have 

in mind that, despite the fact that all straddles appear to be delta-neutral in the one-day 

period, ITM positions are subject to some vega risk.

5.7.3 Risk-Reversals

A significant body o f the options literature docum ents that Risk Neutral Densities which 

are inferred from option prices exhibit significant negative skewness (see, for instance, 

Jackwerth (2000)). One explanation that has been proposed for this well documented 

finding is options mispricing, especially overpricing o f OTM  puts. If the options m arket
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im plies a significant negative skewness that is not consistently related to a subsequent 

fat-tailed realized distribution, trading strategies that short overpriced OTM puts are 

likely to earn returns that are in excess of their risk.

The m ethodology of Liu (2007) is followed to construct risk-reversals, which are 

portfolios that essentially place a bet on the non-realization o f option-implied negative 

skewness, by exploiting the difference in price between call and put options of the same 

moneyness. On the first trading day o f each month (i.e. the M onday after the third Friday 

o f each m onth), pairs o f calls and puts with similar absolute deltas are identified, and a 

risk-reversal is created by shorting one contract o f the more expensive option while 

buying one contract o f the cheaper one. It should be noted that, in forming these 

portfolios, call-put com binations are considered when their absolute deltas differ by a 

maxim um  of 0.04. Buying the call and shorting the put, then, is a long risk-reversal while 

the reverse com bination is characterized as a short risk-reversal.

Contrary to the m ethodology followed in the previous subsections, this Section’s 

main focus is on holding-to-expiration payoffs rather than on daily returns. A lthough the 

initial value o f the portfolio is positive by definition, in the sense that the investor 

receives the price differential between the two option contracts, there are three possible 

term inal payoff types, depending on the value of the underlying index on expiration 

relative to the strikes range [.Kp, Kc]. For instance, in the case of a long risk-reversal with 

OTM  options, if the price ST o f the FTSE/ASE-20 on expiration remains in the range 

bounded by the strikes, the contracts have equal terminal payoffs o f the opposite sign (i.e. 

the position’s net payoff is zero), and the investor profits from keeping the options’ 

prem ia differential. If S T falls below the lower put strike Kp, the call expires worthless 

while there is a negative payoff from the short position in the put. Finally, if ST rises 

above the higher call strike Kc, there is a positive payoff from the long position in the call 

while the put will not be exercised. .

Following the above methodology, 189 holding-to-expiration risk-reversals are 

formed across different moneyness levels by com bining calls and puts as long as the 

absolute difference o f their deltas is less than 4%. Since puts are usually more expensive 

than sam e-moneyness calls, 129 out o f the total of 189 portfolios are long positions, 

while the rem aining 60 are short risk-reversals. M ore than half o f the long positions
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(58.14%) have zero payoffs, leaving the investor profiting from  the difference in the 

options’ prem ia that was received when the portfolio was formed. In addition, 32.56% of 

long risk-reversals achieve positive payoffs on expiration, and only 9.30% have negative 

terminal payoffs. Regarding short risk-reversals, 31.67% have zero payoffs upon 

expiration, while most o f them (46.67%) achieve positive payoffs. Finally, only 21.67% 

of the 60 short portfolios have negative payoffs, indicating that the level S t o f the index at 

m aturity was above the range o f strikes [Kp, Kc] for a small proportion o f our sample.

Table 5.11 

Risk-Reversals

Delta Group delta < 0.25 0.25 < delta < 0.50 0.50 < delta < 0.75 0.75 < delta

Panel A: Summary Statistics for Daily Returns of Risk-Reversals

Average 0.03 0.12 0.36 0.02
t-stat (0.02) (0.04) (0.04) (0.06)

M edian 0.21 0.15 0.15 0.03

No of Obs. 386 1,701 1,059 142

Panel B: Returns for Holding-to-M aturity Risk-Reversals

All Long Short

189 129 60
(100%) (68.25%) (31.75%)

Zero Payoffs
94

(49.74%)
75

(58.14%)
19

(31.67%)

Positive Payoffs 70
(22.22%)

42
(32.56%)

28
(46.67%)

Negative Payoffs
25

(13.23%)
12

(9.30%)
13

(21.67%)

Panel A of this Table tabulates summary statistics of the daily returns of risk-reversals across four moneyness groups. 
The sample runs from January 2004 to January 2007. Panel B reports the returns of holding-to-maturity positions.

In summary, risk-reversals are trading strategies designed to profit from betting 

against the options m arket’s expectation o f a significant decline in the value o f the 

underlying index. For the sample period, investing in these portfolios in the Greek m arket 

appears to offer significant real profit opportunities, w ithout adjusting for risk, since the 

m ajority o f exam ined positions achieve positive cashflows, stem m ing from both the 

options’ prem ia differential as well as from payoffs upon expiration. However, it has to 

be noted that the period from January 2004 to January 2007 is a relatively short one, and

164



www.manaraa.com

it corresponds to a bullish Greek market, with the large capitalization FTSE/ASE-20 

appreciating by more than 28% annually. Consequently, the above mentioned results 

should be interpreted cautiously, since they might be attributed to a ‘small sample 

problem ’, in the sense that the market priced options to reflect the true probability o f a 

market fall which never m aterialized in the somewhat short period under examination. 

The possibility of a small sample biasing these results does not necessarily imply that 

Greek OTM  puts are correctly priced, but highlights the fact that, should the market had 

followed a more negatively skewed distribution, terminal payoffs from investing in risk- 

reversals would have been much lower or potentially negative overall.

5.8 Comparison with Empirical Findings from Developed Markets

In order to put the above findings into context, option returns in the Greek m arket are 

com pared to those observed in developed markets. Although the high m agnitude of 

returns of individual calls and puts written on the FTSE/ASE-20 seems puzzling at a first 

glance, com pared to option returns written on the S&P 500 or the FTSE100, it is 

concluded that they are not necessarily inconsistent with traditional option pricing 

m odels. Furtherm ore, returns of various trading strategies, such as delta and vega neutral 

straddles, indicate that risk-retum  theoretical predictions are strongly supported in the 

Greek market, sim ilarly to its UK and US counterparts.

As has already been mentioned in Section 5.1.2, the efficiency of the emerging 

ADEX is evaluated by com paring the results of this Chapter with stylized facts from 

traditional, developed options markets. Previous studies exam ining the US, in particular, 

have shown that calls do not usually earn significant risk-adjusted returns (proxied by 

CAPM  intercepts) while risk-adjusted put returns are typically found to be significantly 

negative (see Bondarenko (2003), Broadie, Chernov and Johannes (2009), Coval and 

Shum w ay (2001), and Santa-Clara and Saretto (2009) for an analysis o f the CAPM  on 

US options). In addition, most empirical papers suggest that risk-im m une straddles in the 

US only earn the risk-free rate, although some deviations have been documented 

depending on the straddle’s moneyness and the period examined (see Bakshi and Kapadia 

(2003), Broadie, Chernov and Johannes (2009), and Coval and Shumway (2001) for an
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examination o f delta-neutral position in the US). This finding supports market efficiency 

in the sense that an investor establishing a zero-risk position is com pensated by earning 

only the risk-free rate.

5.8.1 Naked Options Positions

First, call options in developed markets have been found to earn relatively high average 

returns. For instance, Coval and Shumway (2001) focus on options written on the S&P 

500 index from January 1986 to October 1995, and report weekly call returns ranging 

from 1.48% for deep ITM calls to 5.13% for deep OTM  ones. Supporting theoretical 

predictions, these returns are in excess of the underlying’s rate o f appreciation for the 

same time period and monotonically increasing as strike price increases. On the other 

hand, Driessen and M aenhout (2006) examine returns o f options written on the FTSE100 

from April 1992 to June 2001, and find that, in contrast to S&P options, returns of UK 

calls have been significantly lower. Average weekly returns of short-term  FTSE100 calls 

range from 0.28%  for ATM  options to 0.04% for deep OTM  ones, while the theoretical 

m onotonic relationship between returns and moneyness is not supported. As was 

discussed in Section 5.5.1, returns o f calls written on the FTSE/ASE-20 have been 

significantly higher than those previously documented in the US and the UK markets. 

M ore specifically, deep ITM calls earn 5.75% per week, while deep OTM  ones earn 

around 19.05% per week, with call returns strictly increasing across strikes. As has 

already been noted, though, the fact that average returns o f Greek call options are four 

times higher com pared to the US, and more than fifty times the m agnitude o f UK call 

returns of sim ilar m oneyness, m ight be at least partially explained by the rapid growth of 

the underlying FTSE/ASE-20 during the 2004-2007 sample period.

A well docum ented finding in the related literature refers to the fact that put 

options tend to earn on average higher returns (in absolute terms) than calls o f sim ilar 

m oneyness. This asym m etry is highlighted by Coval and Shumw ay (2001) for the US 

market, w ith puts written on the S& 500 losing between -14.56% for deep OTM  puts to - 

6.16% for deep ITM ones. Confirm ing theoretical predictions, these put returns are below 

the risk-free rate, as well as increasing (becoming less negative) as strike price increases
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(see also Bondarenko (2003) and Broadie, Chernov and Johannes (2009) for returns of 

S&P 500 puts within different sample periods). W ith respect to the UK, Driessen and 

M aenhout (2006) find that puts written on the FTSE100 have highly negative returns, 

ranging from -6.86% for short-term, deep OTM options to -4.58% per week for deep 

ITM ones. In contrast to FTSE100 calls, puts support the theoretical prediction o f strictly 

increasing returns (decreasing in m agnitude) across moneyness, while the difference 

between put returns in the US and in the UK is significantly sm aller than the one 

docum ented for calls. Section 5.5.2 o f this Chapter reports that puts written on the 

FTSE/ASE-20 lose between -25.25% (deep OTM ) and -12.45% (deep ITM) on a weekly 

basis, while, sim ilarly to results for developed markets, put returns in Greece become less 

negative as strike price increases. Overall, writing put options on the FTSE/ASE-20 

results in higher average returns compared to sam e-moneyness S&P 500 or FTSE100 

puts, with put returns in the Greek market being closer to results from the US rather than 

the UK options market.

The fact that options are found to consistently earn very high returns, with the 

m ost extrem e case typically being returns to writing deep OTM  puts, has led some 

authors to describe options returns as ‘puzzling’. However, Broadie, Chernov and 

Johannes (2009) argue that, unless they are compared to a reasonable benchmark, it is 

difficult to conclude whether high option returns constitute in fact a paradox. The 

significance of observed returns can be examined by focusing on risk-adjusted estimates, 

proxied by the intercepts of CAPM  regressions on option returns. Under standard CAPM  

theory, alphas are expected to be statistically indistinguishable from zero, since expected 

returns are only com pensating for bearing systematic risk. Focusing on the Greek market, 

this theoretical prediction is supported in the case of calls which have insignificant 

alphas. Put returns appear to be relatively puzzling, since after controlling for their 

systematic risk, intercepts rem ain statistically significant across all moneyness categories. 

These results are sim ilar to Broadie, Chernov and Johannes’ (2009) exam ination o f risk- 

adjusted returns o f puts written on the S&P500, who report statistically significant 

CAPM  alphas, ranging from -51.72% for deep OTM  puts to -24.60 for deep ITM ones 

(on a m onthly basis). Also note that, these results remain unchanged, even after 

incorporating changes in the underlying’s volatility as an additional explanatory factor in
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the extended CAPM , indicating that additional factors are potentially priced in the Greek 

market, a conclusion that is consistent with the explanation proposed by Broadie, 

Chernov and Johannes (2009) for the US market.

5.8.2 Option Strategies

After exam ining individual option returns, the focus moves to returns of various option 

portfolios. First, a trading strategy that has received a fair amount o f attention in the 

related literature explores returns of delta-neutral combinations o f options which, under 

the C A PM ’s assum ptions, should be equal to the risk-free rate. The intuition behind this 

m ethodology is that, since these straddles are formed such that they are essentially zero- 

delta (or, equivalently, zero-beta), they have no exposure to risk from m arket m ovements 

and, consequently, should earn the risk-free rate. However, Coval and Shumway (2001) 

as well as Broadie, Chernov and Johannes (2009) report that delta-neutral straddles which 

are formed by com bining calls and puts written on the S&P 500 have, in fact, statistically 

significant returns in their respective sample periods. For instance, Coval and Shumway 

(2001) find that ATM  straddles lose around 3% on a weekly basis, with straddle returns 

generally increasing (becoming less negative) as strike price increases. In contrast, zero- 

delta straddles in Greece are found to have insignificant returns, irrespective of their 

m oneyness, indicating that the C A PM ’s market-risk alone goes some way into explaining 

the return characteristics of options combinations.

It has been suggested that the significant returns o f delta-neutral straddles in 

developed markets are due to the fact that, although these straddles are theoretically 

im m une to changes in the value of the underlying, they m ight still be exposed to other 

sources of risk. The attention that volatility risk has received in recent studies prom pts 

Liu (2007) to focus on delta and vega neutral straddles, com bining long positions in the 

underlying and a put with a short position in a call o f sim ilar moneyness. Since these 

straddles have zero exposure to the two most com m only accepted sources o f risk in the 

options market, nam ely changes in the value of the underlying as well as changes in the 

underlying’s volatility, they are expected to earn the risk-free rate. However, Liu (2007) 

exam ines a sample o f options written on the FTSE100 from January 1996 to April 2000,
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and finds that, while weekly returns of delta and vega neutral straddles are insignificant 

for ATM  and ITM com binations, OTM  and deep OTM  straddles have significantly 

negative returns. M oreover, Liu argues that one potential explanation for the above 

m entioned results m ight be that, since delta and vega are estimated as local sensitivities, 

the straddles’ neutrality is unlikely to hold across the retum -estim ation period of one 

week. As was discussed in Section 5.7.3 o f this Chapter, delta and vega neutral straddles 

on the FTSE/ASE-20 have returns that are slightly negative and increasing across strikes. 

M ore im portantly, though, straddle returns across all moneyness levels are statistically 

indistinguishable from the risk-free rate, supporting theoretical predictions.

Finally, Liu (2007) examines whether the com m on finding that deep OTM  puts 

are typically m ore expensive than calls o f sim ilar moneyness, presents any real profit 

opportunities in the UK market. She estimates holding-to-expiration returns o f FTSE100 

risk-reversals, which are option combinations designed to profit from a bet against the 

negative m arket skewness implied by deep OTM  option prices, and finds that, w ithout 

accounting for risk, these trading strategies have been significantly profitable during her 

sample period. M ore specifically, OTM  puts are found to be more expensive than sim ilar 

m oneyness calls in 81% of the positions examined, with more than 80% of these 

positions resulting in positive returns, stemming from the options’ premia differential as 

well as the positive term inal net payoff o f the portfolio. Section 5.7.4 reports similar 

results for risk-reversals on the FTSE/ASE-20, w ith 85%, on average, o f all portfolios 

having positive payoffs. However, the possibility of a small sample problem  biasing the 

results, especially in the bullish Greek market, has to be kept in mind when interpreting 

the above findings.

5.9 Conclusion

This Chapter has exam ined the efficiency of the em erging market o f the Athens 

Derivatives Exchange com pared to developed options markets, from the perspective o f 

returns that are com m ensurate with underlying risks. It is shown that returns of individual 

options in Greece are not inconsistent with empirical findings from developed options 

markets, such as the US and the UK. In addition, returns of delta and delta/vega neutral
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straddles are found to be statistically indistinguishable from the risk-free rate, implying 

that returns of these trading strategies are in line with theoretical predictions, with p- 

values even higher than those documented in traditional, developed markets.

These results appear to reject the hypothesis o f ADEX exhibiting a lower level of 

efficiency, attributed to the relatively high transaction costs and illiquid trading in the 

Greek options market, com pared to the US. Santa-Clara and Saretto (2009) docum ent a 

potential m ispricing in S&P options that results in various option strategies earning 

abnormally high returns relative to their risk. However, these profit opportunities are 

allowed to persist instead of being arbitraged away due to the relatively high bid-ask 

spread, as well as the strict margin requirements in the US market. Following this line of 

thought, one m ight expect that the Greek market would offer a greater scope for options 

mispricing, since exploiting these profit opportunities would be even more costly for a 

typical investor due to the significantly higher bid-ask spreads as well as to thinner 

trading.

In order to put the significant difference in trading costs between developed and 

em erging m arkets into context, one should consider that trading volum e in Greece is 

dram atically low er than, for instance, the US. During 2006, slightly less than 600,000 

FTSE/A SE-20 option contracts were traded in ADEX, while the respective volum e for 

S&P500 options traded in CBOE exceeded 104 millions. In addition, the fees charged by 

the exchange for each transaction are higher in the Greek market, with ADEX charging 

m arket-m akers around €0.20 per trade (depending on the option’s moneyness) while 

CBOE charging around $0.20 per trade (depending on total contracts trad ed ).13

However, the relative efficiency o f ADEX cannot be rejected, since trading 

strategies do not appear to offer significant profit opportunities in this em erging options 

market, even without accounting for transaction costs. This seems to indicate that the 

Greek m arket exhibits a degree o f efficiency com parable to that o f developed markets, at 

least with respect to the absence of opportunities for abnormal profits in excess o f the 

underlying risks.

13 Chicago Board Options Exchange, 2006 Annual Report
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Appendix B 

Theoretical Expected Option Returns

Given that options represent levered positions in the underlying asset, the Black- 

Scholes/CAPM  fram ework predicts that options’ betas should be greater in absolute 

terms com pared to the underlying’s beta. Calls written on a m arket index (which has a 

beta of unity and a positive expected risk-premium) will have positive betas higher than 

one and, therefore, theoretically expected call returns are positive and higher than the 

underlying index’s returns. Accordingly, index puts are negatively related to changes in 

the underlying’s level, i.e. put betas are negative, so they should theoretically have 

expected returns that are below the risk-free rate as they are essentially instrum ents for 

hedging systematic risk.

Although it could be argued that the Black-Scholes as well as the CAPM  

assum ptions are potentially restrictive, Coval and Shumway (2001) dem onstrate that 

these theoretical predictions can be obtained under much weaker assum ptions. The 

following discussion is based on the derivation of Propositions 1 and 2 in the original 

Coval and Shumway (2001) paper.

The Coval and Shumway general setting only assumes the existence o f a 

stochastic discount factor m  that prices all assets through (B .l)  and that this stochastic 

discount factor is negatively correlated with the price of the underlying,

E[ R?xm]  = 1 (B .l)

where R f  is the gross return o f asset i and m is strictly positive. Then, Proposition 1 

describes the expected return o f a call option that is written on security i (quote from the 

original paper):

Proposition 1 If the stochastic discount fac tor is negatively correlated with the price o f a 

given security over all ranges o f  the security price, any call option on that security will 

have a positive expected return that is increasing in the strike price.
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P ro o f Assum e that the underlying security has a distribution f l y)  and that the joint 

distribution o f the security and the stochastic discount factor is given by f ly,z).  Then the 

expected gross return E[R°]  o f a call option with strike K  can be expressed as:

f ( S - K ) f ( S ) d S  
E[ R?( K) ] =  ----------------------— -  (B.2)

where S  is the price o f the underlying. The expected net return E[ R" ] of the call option 

can be written as:

f ( S - K ) ( \ - E [ m \ S ] ) f ( S ) d S
E[R"  (K)]  = E[Rtf  (K)]  - 1  = i f ---------------------------------   (B.3)

j  ( S - K ) E [ m \ S ] f ( S ) d S

dE\RN (/Ol
Coval and Shumw ay (2001) then show that the derivative ------^ -------- of

oK

expected net call returns with respect to the strike price is:

a£[/?c" ( / Q ] _

dK

f ( S - K )  : f  (?).- d s  f E[m\ S]  f ( S )  3 5 - f  (S -  K)E[m I 5 ] i (5) 
*=* l - F ( K )  i - F ( K )  1 -

3 S
F{K)  *=« 1 - F ( K )  Js=« l - F ( K )

--------------------------fTs)---------------------------------   ̂ '
[ f  (5 -A T )£ [m l5 ]i J l / dS]2 
JS = l - F ( K )

where F(S)  is the cum ulative density function corresponding to f l S ). The num erator in 

(B.4) is the negative o f the covariance between (5 - K)  and m,  conditional on S > K, i.e. 

the option being in the money:

-  cov(E[m I S],  (5 -  K)  I S > K]  = E[m I S > K] x E[S -  K  I S > K] -  E[E[m I S]( S - K ) \ S > K ] (fi.5)
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The assumption that the stochastic discount factor m is negatively correlated with 

the security price S  implies that the expression in (B.5) will be positive. In other words, 

expected net call returns E[R* (K )] will be increasing in strike price K  since their first

com bined with the fact that a call option with a zero strike price will have an expected 

return equal to that o f the underlying, suggests that expected call returns should 

theoretically be positive, higher than the underlying’s expected return, and m onotonically 

increasing across strikes.

The corresponding Proposition 2 describes expected put returns (quote from the 

original paper):

Proposition 2 I f  a stochastic discount fac tor is negatively correlated with the price o f  a 

given security over all ranges o f  the security price, any p u t option on that security will 

have an expected return below the risk-free rate that is increasing in the strike price.

Proof Let the expected net return E [R"  (£")] o f a put option with strike K  written

on an underlying which has a distribution j f y)  and a jo in t distribution with the stochastic 

discount factor f(y ,z) be given by:

dE\R^ (1̂ )1
derivative with respect to K  was shown to be positive,  c- > 0 .  This relation,

(K  -  S )( 1 -  E[m  I S ] ) f ( S ) d S  
(B.6)

^ K( K - S ) E [ m \ S ] f ( S ) d S

The first derivative — of expected net put returns with respect to the
dK

strike price is:
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d E [R ^{K )] = 

dK

J5‘* (AT -  S)E[m I S] f (S)dS  JS=* f ( S ) dS  -  j*=* (K -  S ) f ( S ) dS  £  ̂E[m I S] f (S)dS
_ _   ̂  ̂ (B.7)

[j (K -  S)E[m I S ] f ( S ) d S f

Using the same reasoning as in Proposition 1, the num erator in (B.7) is 

proportional to the covariance between (K  - S) and the stochastic discount factor m,  

conditional on S < K,  i.e. the option being in the money.

cov(E[m \ S ] , ( K - S ) \ S  < K ]  = E[E[m I S]( S -  K) \  S < K ] -  E[m\  S < K ] x  E[S  -  K  I S < K]  (B.8) 

As the strike price approaches infinity, the expected net put return approaches the

a £ [ /^ ( /Q ]
risk-free rate. Also, the positive first d e riv a tiv e  -------  of put returns with respect to

oK

strike price results in net put returns increasing monotonically as K  increases. Therefore, 

expected put returns should theoretically be lower than that o f the underlying (although 

not necessarily negative) and increasing across strike price space.
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Chapter 6 

Summary and Conclusions

This thesis is m otivated by the significant and increasing interest of the finance literature 

in the concept o f volatility. The risk-retum  relationship constitutes one of relatively few 

‘axiom s’ in finance and states that a rational investor allocates resources into alterative 

investm ents in an attem pt to m axim ize the overall position’s expected return for a given 

level o f risk or, alternatively, to minim ize the position’s risk exposure for a given level of 

expected return. This proposition was illustrated by M arkow itz’s efficient frontier which 

consists o f all optimal portfolios that satisfy the risk-retum  relationship, and it has led to 

the developm ent o f the Capital Asset Pricing M odel, one o f the most popular and heavily 

discussed pricing models am ong academic researchers and finance practitioners alike.

The attention that volatility has received stems from  it being directly related to the 

concept o f risk, since the riskiness o f an investm ent is com m only m easured by the 

volatility o f  its returns. The accurate measurem ent and forecasting o f returns volatility is, 

thus, an issue with significant implications for a variety o f subjects within finance, such 

as portfolio m anagem ent, derivatives trading, and risk management. The m ajority of 

studies that refer to volatility measurem ent and prediction generally fall under two main 

fram eworks which are based on significantly different lines o f thought. M ore specifically, 

the first fram ework assum es that the conditional variance of returns does not depend on 

exogenous variables and that it can be m odelled by fitting Autoregressive Conditional 

H eteroscedasticity models on historical returns, while the second one relies on the prices 

o f options to infer the m arket’s expectation about the future volatility o f the underlying 

asset’s returns.

The present dissertation consists of four em pirical essays on the two 

m ethodologies for m odelling volatility that were m entioned above. These essays were 

presented in Chapters 2 to 5 and they examined specific research questions that relate to 

historical volatility m odels and to option-implied volatility estim ates without, however, 

attem pting to com pare the respective perform ance o f the two fram eworks in measuring
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and forecasting volatility. Given that each empirical essay addresses a different issue and 

that it can be read separately rather than sequentially in the overall thesis, a set of 

independent conclusions was reached with respect to asym m etric historical volatility 

m odels, the inform ational content of implied volatility and the efficiency o f options 

markets.

In summary, asymmetric GARCH models are examined in the case of the index 

as well as for individual stocks, focusing on the com m only observed higher degree of 

asym m etry in index volatility com pared to that of stock volatilities. The dynamics of the 

average realized correlation among the index’s constituents are found to explain part of 

this discrepancy, suggesting that changes in diversification opportunities have a 

significant im pact on the asym m etry in the conditional variance o f a value-weighted 

com bination of stocks. Furthermore, the stylized fact of individual stock volatilities being 

less asym m etric than index volatility is shown to be easily accom m odated by the ‘dow n

m arket’ hypothesis where the conditional variances o f both asset classes respond 

asym m etrically to market-level innovations rather than to idiosyncratic ones. Regarding 

option-im plied inform ation, it is found that the implied variance of the spot exchange rate 

goes som e way into explaining the time-varying risk-prem ium  in currency m arkets and 

that incorporating this term in forward unbiasedness regressions results in a significant 

im provem ent o f the validity of the Uncovered Interest Parity. Finally, it appears that the 

efficiency o f the em erging options m arket in Greece is com parable to that of the 

developed US and UK markets in the sense that, despite higher transaction costs and 

thinner trading, the extent o f mispricing and the opportunity for abnormal returns is not 

more pronounced compared to its developed counterparts.

C hapter 2, in particular, examines whether the ‘diversification’ hypothesis can 

account for the widely reported empirical finding of index volatility being more 

asym m etric than the volatilities o f its individual components. The analysis is based on the 

notion that, since index variance can be decomposed to the weighted sum  of individual 

stock variances and to the sum of cross-correlations, if asym m etric index volatility does 

not stem from asymmetric individual volatilities it could be the case that changes in 

correlations drive this conditional negative relationship. Prelim inary evidence is 

presented o f an asym m etric negative co-m ovem ent between the index’s average realized
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correlation and past signed index returns, similarly to the asymmetric co-movem ent 

between the conditional variance and past returns. Changes in the average realized 

correlation are also shown to cause changes (in the Granger sense) in the realized 

volatility of the index, supporting the ‘diversification’ hypothesis. M ore importantly, 

though, estim ating an extended GJR specification that includes conditional changes in the 

index’s average correlation as an additional regressor results in a less pronounced 

‘asym m etry effect’ in index returns. Overall, the dynamics of the average realized 

correlation among the index’s constituents appear to be significantly correlated with the 

index’s conditional variance and to absorb some of the explanatory power of lagged 

returns’ magnitude

The third Chapter attempts to explain the above discrepancy in the degrees of 

volatility asym m etry exhibited by indices and by individual stocks from the perspective 

o f the ‘dow n-m arket’ effect which suggests that returns’ volatility responds 

asym m etrically to system atic news rather than to idiosyncratic ones. It is found that the 

conditional variances o f individual stocks are in fact asym m etric with respect to lagged 

signed m arket returns and that the extent o f asymmetry is significantly higher than the 

one docum ented with respect to firm -specific returns. M oreover, the asymmetric response 

o f individual stock volatilities to market-level innovations is not necessarily less 

pronounced com pared to volatility asymmetry in index returns, indicating that the 

‘volatility asym m etry phenom enon’ is a common characteristic of both asset classes 

within the ‘dow n-m arket’ explanation.

The next two essays, presented in Chapters 4 and 5, shift the focus from historical 

volatility m odels to option-im plied information. M ore specifically, C hapter 4 uses option- 

im plied variance in order to re-examine the forward premium  puzzle, i.e. the com m only 

reported finding that regressions o f spot exchange rates on forward rates system atically 

fail to produce the unity slopes that Uncovered Interest Parity predicts. W hen the Jensen 

Inequality Term  (JIT) o f the spot ra te’s future variance, proxied by the option-implied 

variance, is included into the forward unbiasedness specification, the resulting proportion 

o f slope coefficients that do not reject the UIP experiences a threefold increase com pared 

to the standard specification. M oreover, this significant im provem ent in the num ber of 

rolling regressions that do not reject theoretical predictions is found to be robust to
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different estim ation techniques for extracting the im plied variance from prices o f options 

written on foreign exchange. It is concluded, therefore, that previous studies’ findings of 

the JIT  variance having an insignificant impact on explaining deviations from the UIP 

could potentially be attributed to a problematic proxy for the future variance of the 

exchange rate rather than constituting a fundamental characteristic of currency markets.

Finally, using option prices to extract the m arket’s expectation o f the underlying’s 

future distribution assumes the informational efficiency o f the options market. Given that 

the efficiency o f traditional options markets, such as those of the US and the UK, has 

already been examined in previous research, the fifth Chapter focuses on the com parable 

efficiency of em erging options markets. The data used refer to the Athens Derivatives 

Exchange in Greece and, similarly to previous studies, the efficiency o f the m arket is 

evaluated from the perspective o f option returns in excess o f their underlying risk. Based 

on two com m only used criteria to measure abnormal returns, nam ely CAPM  alphas and 

returns of delta and/or vega neutral straddles, it is found that the em erging options market 

in Athens is not characterized by a higher degree of m ispricing com pared to its developed 

counterparts. These results are consistent with the fact that most of the trading volume in 

the Athens exchange is attributed to large international investors with experience in more 

developed m arkets so that deviations of quoted option prices from  their ‘true’ values are 

minimized. This finding is, however, in contrast to the hypothesis that higher transaction 

costs and thinner trading in Athens are likely to widen the no-arbitrage band and, 

therefore, be associated with more pronounced mispricing.
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